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Discrete Markov Chains 

• Given is a discrete state space for a system 
which is observed over time 

• We denote the states with i, j,…and denote 
transition probabilities in the time [0, t]by    

 
• The transition probabilities define a matrix 

(Transition matrix) 
• We are interested in the behavior of the 

system after a long time 
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Discrete Markov Chains 

• The chain is called a homogeneous chain if the 
transition probabilities are the same for all 
times. Transition Matrix: 
 

• For an initial  distribution of the states                                      
 
 we  obtain the probabilities of the states at 
time t by  
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Discrete Markov Chains 

• The recurrence time  for a state i is defined by 
 

• The Markov chain is irreducible, if for all i, j 
exists a  t , such that  

• An irreducible Markov chain is recurrent, if                       
 

    or equivalent 
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Discrete Markov Chains 

• An irreducible Markov chain is  positive 
recurrent if                  for all i, and zero-
recurrent  otherwise 

• An irreducible Markov chain is  positive 
recurrent if there exists a stationary 
distribution for the states such that for all i, j 
the following equation holds:   
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Discrete Markov Chains 

• An irreducible Markov chain is called 
aperiodic, if for all states  i  the 1 is the largest 
common divisor of the sets 
 

• For a positive recurrent and aperiodic Markov 
chain exist always a unique stationary 
distribution defined by the equation 
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Discrete Markov Chains 

• A positive recurrent and aperiodic Markov 
chain is called ergodic Markov chain 

• The following propositions hold:  
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Discrete Markov Chains 

• A positive recurrent Markov chain wit 
stationary distribution is called  reversible if 

      
      
(Detailed balance equation) 
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