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Bayes Classification 

• Basic problem formulation for two groups 
– Given N=n+m training data from two classes  labeled by    

Y = 0 and Y =  1 
 
 

– For the two groups we know prior  probabilities 
 

– We assume that the attributes x have a certain distribution 
within the groups with probaiblity densities  
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Bayes Classification 

• If we know the priors and the probabilities in the 
groups we can define the posterior probabilities of 
the groups given the data by  
 

 
 

• Decision rule: Assign a new observation to the class 
for which                           is maximal (most probably 
class) 
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Bayes Classification 

• Operational reformulation:  
 

 
 

 
• This rule is optimal with respect to the 

misclassification rate 
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Bayes Classification 

• Generalization to more than two classes by deciding 
for the class with maximal posterior probability 

• Generalization for problems with different costs of 
misclassification by changing the threshold 1  to 
another value  

• Major problem in application: 
– Learning the prior probabilities 
– Learning  the distribution of the attributes in the classes 
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Bayes Classification 

• Learning prior probabilities: 
– Usually taken from the size of the samples within the 

groups 

• Learning of the probabilities                in the groups is 
much more difficult 
– Assumption of normal distribution is in most practical 

cases not justified (quantitative and qualitative attributes) 
– Usually we have a large number of attributes and  a 

common distribution is difficult to estimate 
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Bayes Classification 

• In order to overcome these problems the naïve Bayes 
approach is used 

• Basic idea behind naïve Bayes:  
– Assume that the attributes are independent   
– Estimate  for each attribute individually the distributions in 

the classes 
– Calculate the probabilities for all attributes by 

multiplication 
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Bayes Classification 

• For the individual attributes we can use in case of 
qualitative attributes  frequencies in the training data 

• In case of quantitative attributes one can use either a 
defined distribution or density estimation 

• Example: Given for 11 customers the duration of the 
relationship to the company, the sales volume, and 
the type of usage, we want to learn whether the 
customer uses a certain service 
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Bayes Classification 

– Data (grey area) 
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Bayes Classification 

– Our goal is to assign the last customer to one of the two 
groups (using the service or not) 

– Estimation of the probability densities of  duration and 
sales in the two groups:  
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Bayes Classification 

– Results are shown in the right part of the table 

• Advantage of naïve Bayes:  
– Rather simple calculation 
– We obtain rule for classification and probailities 
– Simple adaptation to different misclassification costs 

• Disadvantage:  no variable selection  
• Successful application: spam filter  
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Logistic Regression 

• Basic problem formulation for two groups: 
–  Given N=n+m training data from two classes  labeled by    

Y = 0 and Y =  1 
 

 
– Our interest is finding a model for the probability that an 

observation  belongs to  the group              in dependence 
of the available k attributes   
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Logistic Regression 

– For obtaining such a model we use the logarithms of the 
odds for belonging to the second group:  

 
 

– The assumption is that the dependence of the logit from 
the attributes is a linear function: 
 

 
 

 
 

 









−

=







=
=

=
p

p
yP
YPlogit

1
ln

)0(
)1(ln

kk xxlogit βββ +++= 110

Business Intelligence                                           
Cross-sectional Analysis 2 SS 2017 14 



Logistic Regression 

• We interpret now the results for group membership 
in the training sample as results of a binomial 
distribution 

• This allows application of a statistical model well 
known under the heading  logistic regression 
– From the training data the parameters can be estimated 

using the method of maximum likelihood, i.e., find the 
values of                             which maximize the observed 
class memberships in the training data  
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Logistic Regression 

• After estimation of the coefficients we calculate the 
probabilities for the second group given attribute 
values        according to the formula 
 
 

• The decision is defined by  
 
 

 tr defines a threshold (standard  case tr = 0.5) 
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Logistic Regression 

• Example: data about churn risk of 24 customers  

Business Intelligence                                           
Cross-sectional Analysis 2 SS 2017 17 



Logistic Regression 

– Parameter estimates for the logistic model  
 
 

– Interpretation:  
– Risk for churning for private users is exp(3.058)=21.3 times 

the risk of office users   
– Increase of activity index by 1 unit decreases the risk of 

churning by a factor exp(- 0.577)=0.56 
 

ActIndUserTypequitlogit 577.0058.3385.1)( −⋅+=
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Logistic Regression 

• Advantages of the logistic model 
– Procedures for automatic selection of important 

attributes can be used similar to regression 
– Interpretation of the results as risk  
– We obtain probabilities as well as class 

memberships  
– Adaptation to different costs using different 

thresholds 
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Logistic Regression 

• Disadvantage: generalization  to classification with 
more than two groups 
– Usually done by comparing all pairs of classes and 

use a majority vote, i.e., the class which is used 
most frequently  

– Alternative: classification one versus the rest and 
assign to the class with highest  probability 

 
• Typical applications: churn management, credit risk 
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Classification Trees  

• Basic problem formulation for  tree classifiers 
– Given a training sample composed from k different 

classes we want to apply a sequence of questions about 
properties of the attributes which are answered either 
by “yes” or “no” 

– The sequence of questions defines a binary tree  
– The leaf nodes of the tree correspond to a decision 

about class membership 
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Classification Trees  

Example:  Given the information from 11 customers 
about usage (1 = yes, 0 = no) of a certain service, find a 
rule which allows predict of usage for customer 12 (cf. 
naïve Bayes) 
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Classification Trees  

• Main tasks  for finding the classification tree: 
– Find splitting rules: For each node formulate a rule which 

attribute has to be selected for the next split and which 
threshold has to be used 

– Find pruning rules: In order to avoid complex trees which 
overfit the training data define rules which allow pruning 
the tree 

• The most frequently used method for tree 
classification is CART (Classification and Regression 
Trees) 
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Classification Trees  

• Splitting Rules (CART) 
– Basic for splitting is a definition of the node impurity  Q(t), 

i.e., a numerical value which measures the mixture of 
different classes in the node t defined by the relative 
frequencies               of the classes in the node   

– Two specifications: Gini index and Entropy 
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Classification Trees  

– For a variable the split is defined by the conditions 
 

  
 

– The variable used for split is that one with minimal 
impurity measure (greedy search) 

– Splitting stops if the node has impurity 0 or a small number 
of cases 
 
 

)(
)(

variablesequalitativaXaX
variablesvequantitatitrXtrX

kk ≠∨=
>∨<

Business Intelligence                                           
Cross-sectional Analysis 2 SS 2017 25 



Classification Trees  

• Pruning the tree  
– Pruning of the tree is based on a criterion which takes into 

account the complexity of the tree by penalization of the 
empirical risk with the number of nodes |T| 
 

  
– It can be shown that only a final number of penalization 

parameters         have to be checked and that there exists a 
unique tree which minimizes the empirical risk 

– The final  tree is afterward defined by crossvalidation from 
the candidate trees 
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Classification Trees  

• Advantages of CART 
– The procedure can be generalized to problems with 

different weights for misclassification costs 
– Missing values can be handles within the procedure by so 

called surrogate splits (alternative variable if the 
information for split is missing) 

– Applicable to an arbitrary number of classes 
– Estimation of class probabilities is rather simple 
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Classification Trees  

• Disadvantages of CART 
– The procedure is sensitive to the ordering of the variables 
– Dependency on training data 
– Splits do not take the dependency of the variables into 

account 

• In general CART is one of the most popular methods 
for classification 
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Classification Trees  

• A generalization of CART to overcome the 
disadvantages is Bagging (Bootstrap Aggregation) 
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Classification Trees  

• Another generalization are Random Forests 
– Similar to Bagging but in each Bootstrap sample only a 

random subset of the attributes is used  

• Other methods for tree classification 
– C4.5, C5: allows trees with more than two child nodes 
– CHAID (Chi-Square Automatic Interaction Detection): 

partitioning tables from qualitative variables 
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Nearest Neighbor Classification 

• Basic problem formulation for  k-nearest neighbor 
classifiers 
– Given the training data from k classes  
– Define a distance between the observations based on the 

attributes  
– Find for a new observation            the k observations  in the 

training sample which are closest to the new observation 
– Assign to the new observation the class which is the 

majority of the classes in the k nearest neighbors 
 

newx
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Nearest Neighbor Classification 

• Main computational problems 
– Definition of the distance between the observations 

• In case of quantitative variables the distance is usually the 
Euclidean distance 

• In case of binary variables the Hamming distance is frequently 
used 

• Combination of qualitative and quantitative variables needs 
special consideration. In R the function daisy allows such a 
calculation 

– Choice of k: The simplest case is k = 1, many times k = 5 is 
recommended 
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Nearest Neighbor Classification 

• Advantages of nearest neighbor classifiers. 
– Easy to calculate  
– From theoretical point of view close to Bayes classifiers 
– No explicit learning step (instance based learning, lazy 

learning) 

• Disadvantages 
– Sensitive to the local structure of the data (outliers) 
– No variable selection 
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Support Vector Machines  

• Basic problem formulation for  support vector 
machines in case of two classes labeled by –1 and +1 
– Training  data from two classes:   

 
– We want to separate the two classes by a linear function 

(hyperplane) 
 

– The quality of the separation is measured by the so 
called margin , i.e., the minimum distance of points in 
the classes from the hyperplane  
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Support Vector Machines  

– Points with smallest distance are called support vectors 
– Visualization of the margin in case of two attributes 
                good separation                  bad separation 

Business Intelligence                                           
Cross-sectional Analysis 2 SS 2017 35 



Support Vector Machines  

– We want to find a linear function which makes the idea 
of good separation in the previous example precise 

• Main problems in solving this task 
– Is it always possible to separate the classes? 
– How can we calculate the best separation? 
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Support Vector Machines  

• Vapnik-Chernovenkis dimension answers the first 
question 
– How many points can be separated in k dimensions by a 

hyperplane, independent from the position? 
– In two dimensions obviously only three points 
– Vapnik Chernovenkis  dimension of a class of functions 

(VC-dimension): The maximum number of points in any 
configuration, which can be separated by a function in the 
class 

– In case of linear functions in k dimensions the VC-
dimension is k + 1 
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Support Vector Machines  

• Development of the algorithm for finding the best 
separating hyperplane is based on three ideas 
– First idea: solution in case of possible separation of the 

points 
• Solution obtained by a quadratic minimization problem: Find a 

vector         and a constant b such that 
 
 
 
 

• This is a high dimensional quadratic optimization problem    
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Support Vector Machines  

– Second idea:  allow not perfect separation by penalization 
of points which are misclassified by a so called soft margin 
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Support Vector Machines  
• Solution obtained by a quadratic minimization problem with 

penalization terms: Find a vector         a constant b and penalty 
terms           such that 
 
 
 
 
 

• Here C is a parameter measuring the trade off between separation 
and classification 
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Support Vector Machines  

– Third  idea:  Transform the problem in  a new more 
complex space with  higher VC-dimension with respect to 
linear separation functions  

– Example: XOR-problem 
                              Data                             Transformed Data 
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Support Vector Machines  
• This idea is realized by the so called kernel trick: we do not 

transform the problem explicit but use a  kernel function which 
allows the calculation of inner products and distances in the new 
space 

• The most frequently used kernel function for transformation of 
standard problems is  the radial basis kernel 
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Support Vector Machines  

• Example: Solving an XOR problem  
− Visualization of the solution with radial basis 

kernel in the two dimensional space (crosses 
mark support vectors) 
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Support Vector Machines  

• Properties of support vector machines 
– The solution is from theoretical point of view of great 

interest because it minimizes directly the empirical risk 
– The VC dimension allows theoretical estimation of the 

generalization error 
– The kernel trick allows application to not numeric data, 

e.g., classification of graphs (graph kernels), or 
classification of text data (string kernels) 

– Contrary to logistic regression or trees the solution is 
usually different to interpret   
 

 
 

 

 

Business Intelligence                                           
Cross-sectional Analysis 2 SS 2017 44 



Support Vector Machines  

– The probability for class assignment has to be calculated 
separately, e.g., in R logistic regression is used 

– Classification of more than two classes is mostly done by 
comparing all pairs of classes and taking the majority vote 
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Combination Methods 

• Basic problem formulation for  support vector 
machines in case of two classes labeled by –1 and +1 
– Training  data from two classes:   

 
– We want to learn a classification rule by repeated 

application of a so called weak classifier, i.e., a 
classification function which is only slightly better than a 
naïve classification without knowledge of the attributes 
leading to a misclassification rate slightly smaller than 
0.5  
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Combination Methods 

• This idea is realized the Adaboost algorithm  
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Combination Methods 

– As weak classifier in most cases classification trees with 
only few nodes are used, sometimes called stumps 

– Calculation of the weights for the data and weighting  of 
the different classifiers uses the concept of exponential 
loss 

– The method  allows theoretical estimation of the 
generalization error and has similarities with logistic 
regression 
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