

050069

Chair of Future Communication Faculty of Computer Science Prof. Dr. K. Tutschku

VO Netzwerktechnologie für Multimedia Anwendungen Lecture 3: Review of Networking Concepts,

Multimedia Networking

Prof. K. Tutschku (kurt.tutschku@univie.ac.at)

the indext the interior is a second of the interior in the interior is the interior in the interior is the int

ication

Chair of Future Comm

endowed by

Chapter 2: Revision of Networking Concepts

- <u>Overview:</u>
- Protocol layering and Internet protocol stack
- Circuit switching vs. packet switching
- Connectionless vs. connection-oriented networks, routing, forwarding, and switching
- Transport layer protocols
- Application layer
 - Sockets
 - Client-server and peer-to-peer communication
- Web services

Chair of Future Communication

endowed by

Sockets 1/2

- Process
- Program running within a host
- Processes within same host communicate using interprocess communication (defined by OS).
- Processes in different hosts communicate by exchanging messages
- Application: process in a hosts
- Client process: process that initiates communication
- Server process: process that waits to be contacted

- Several processes running on the same host
 - Identification through 16 bit port numbers
 - Example port numbers:
 - HTTP server: 80
 - Mail server: 25

80

Chair of Future C

endowed by

Sockets 2/2

Host

٠

- Identification through unique
 32 bit IP address
- Socket
 - End-point of an Internet
 Protocol-based
 communication
 - Components
 - Protocol (TCP, UDP, raw IP)
 - Local IP address
 - Local port
 - Remote IP address
 - Remote port

- The remote address can be either
 - any valid IP address, or
 - 0.0.0.0 for listening sockets, or
 - 255.255.255.255 for broadcasting sockets
- Process sends/receives messages to/from its socket

munication

Chair of Future Com

endowed by

Application Layer Protocols 1/2

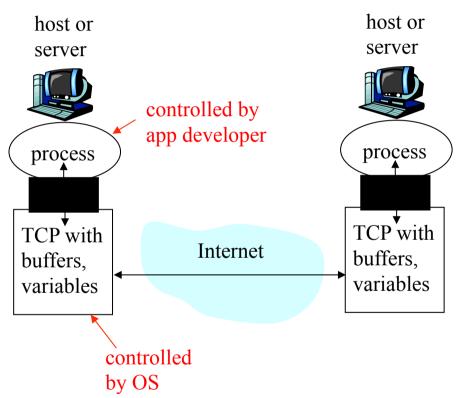
- Application layer protocols
 - Run on different end systems
 - Communicate over a network
 - e.g., Web: Web server software communicates with browser software
 - No interaction from core network devices required
 - New software only in endpoints needed: rapid deployment possible

- Public-domain protocols
 - defined in RFCs
 - allows for interoperability
 - E.g., HTTP, SMTP
- Proprietary protocols
 - E.g., KaZaA

Application Layer Protocols 2/2

- Application layer protocols define
 - Types of messages exchanged
 - E.g., request & response messages
 - Syntax of message types
 - What fields in messages & how fields are delineated
- Semantics of the fields

- State machines
 - Rules for when and how processes send & respond to messages
- Preferred transport protocol for msgs
- Preferred port numbers to be contacted
 - E.g., http on port 80



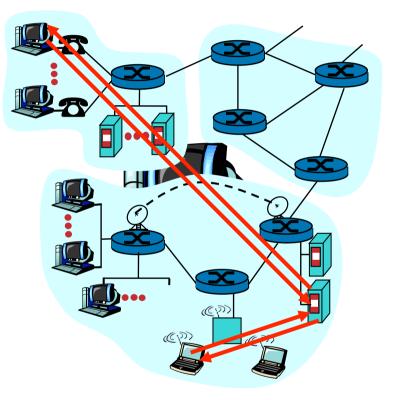
Chair of Future Communication

endowed by

Network Applictions

- Create a new network application
 - Define new protocol
 - Deploy software and start it
 - Start communication by contacting those hosts on the right port
- Some network applications
 - E-mail
 - Web
 - Instant messaging
 - Remote login
 - P2P file sharing
 - Multi-user network games
 - Streaming stored video clips
 - Internet telephone
 - Real-time video conference
 - Massive parallel computing

Ũ

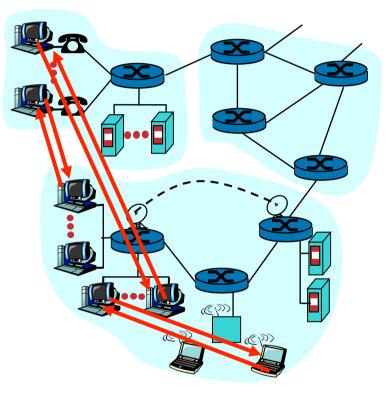

Chair of Future C

endowed by

Client-Server Architecture

Server

- Always-on host —
- Permanent IP address _
- Server farms for scaling Clients
 - Communicate with server _
 - May be intermittently _ connected
 - May have dynamic IP _ addresses
 - Do not communicate directly _ with each other


nication

Chair of Future Cor

endowed by

P2P Architecture

- Arbitrary end systems directly communicate
- Peers are intermittently connected and change IP addresses
- Note: applications with P2P architectures have client processes & server processes
- Highly scalable
 - But difficult to manage

Was ist P2P?

- Def.: Ein Peer-to-Peer System ist ein selbstorganisierendes, verteiltes System aus miteinander verbundenen, gleichen und autonomen Knoten, zur gemeinsamen Nutzung von verteilten Ressourcen in einem Netzwerk ohne eine zentrale Instanz.
- Peer (engl. Gleichgestellter)
- Peer-to-Peer vs. Server-Client Prinzip
- Charakteristika von P2P Systemen:
 - Peers sind sowohl Clients als auch Server
 - Dezentralisierung
 - Nutzung nicht benötigter Ressourcen
 - Transient Connectivity
 - Autonomie der Peers
 - Keine Globale Sicht

Chair of Future Con

endowed by

Bewertung von P2P

- Vorteile:
 - Skalierbarkeit
 - Gemeinsame Nutzung von Ressourcen
 - Robuster gegen den zufälligen Ausfall einzelner Komponenten
- Probleme:
 - Peers und Verbindungen sind nicht zuverlässig
 - Hoher Kommunikationsaufwand

Chair of Future Comm

endowed by

Anwendung von P2P

- Aktuelle Anwendungsbereiche
 - Filesharing (Bittorrent, KaZaa, Napster, eDonkey)
 - Instant-Messaging (Skype, CSpace)
 - Data Storage (PAST, OceanStore, FarSite)
 - Grid/Distributed Computing (Seti@Home, Folding@Home)
 - Collaboration / Groupware (Groove)
 - Kontrolle von Netzen (Tutschku et al., 2003)

Chair of Future Co

endowed by

P2P Overlay Network

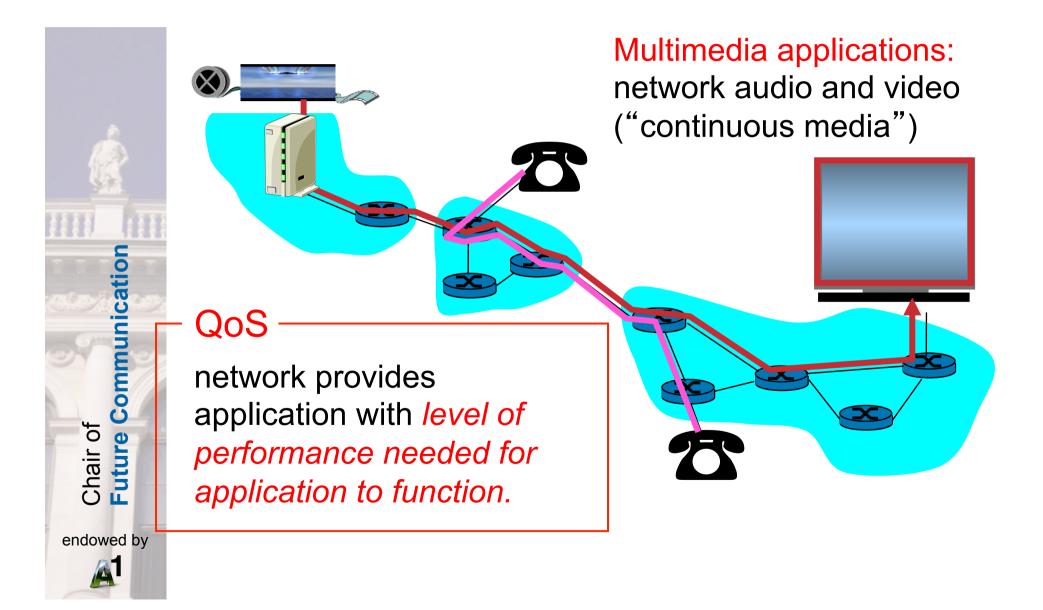
- Overlay Network ist ein logisches Netz
- Setzt auf einem physikalische Netz (Internet) auf
- Besteht aus allen teilnehmenden Peers (Knoten)
- Jeder Knoten speichert eine Liste von Nachbarknoten
- Knoten sind durch (virtuelle) Kanten miteinander verbunden

P2P Klassifikation

2	Client- Server	Peer-to-Peer			
		Unstructured P2P			Structured P2P
ication		1. Generation		2. Generation	3. Generation
Chair of Future Communication		Centralized P2P	Pure P2P	Hybrid P2P	DHT-based
Chair of Future (www	Napster	Gnutella 0.4, Freenet	Gnutella 0.6	Cord, CAN, Pastry
endowed by					

Chair of Future Cor

endowed by


Chapter 3: Multimedia Networking

Overview

- 3.1 Multimedia Networking Applications
- 3.2 Streaming stored audio and video
- 3.3 Real-time Multimedia: Internet Phone study
- 3.4 Protocols for Real-Time Interactive Applications
 RTP,RTCP
- 3.5 IP Telefony, SIP, and H.323
- 3.6 Distributing Multimedia: content distribution networks

Multimedia, Quality of Service: What is it?

MM Networking Applications

Classes of MM applications:

- Streaming stored audio and video
- Streaming live audio and video
- Real-time interactive audio and video

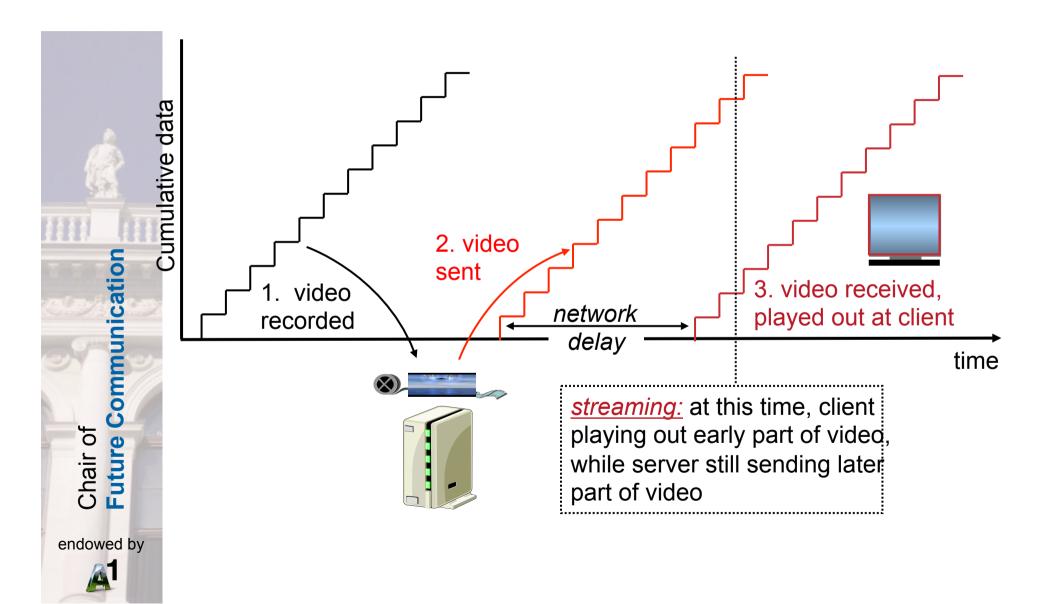
Fundamental characteristics:

- Typically delay sensitive
 - end-to-end delay
 - delay jitter
- But loss tolerant: infrequent losses cause minor glitches
- Antithesis of data, which are loss intolerant but delay tolerant

Jitter is the variability of packet delays within the same packet stream

Chair of Future Communication endowed by

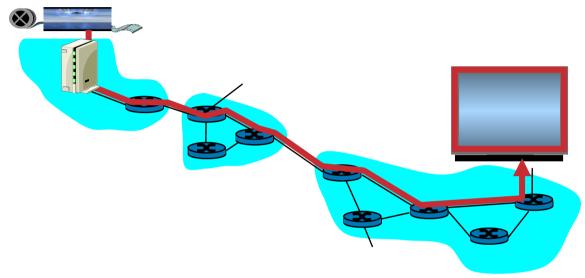
Streaming Stored Multimedia


media stored at source

transmitted to client \bullet

Streaming:

- streaming: client playout begins before all data has arrived
- timing constraint for still-to-be transmitted data: in time for playout



Streaming Stored Multimedia: Interactivity

- VCR-like functionality: client can pause, rewind, FF, push slider bar
 - 10 sec initial delay OK
 - 1-2 sec until command effect OK
 - RTSP often used (more later)
- timing constraint for still-to-be transmitted data: in time for playout

Chair of Future Commu

endowed by

Streaming Live Multimedia

Examples:

- Internet radio talk show
- Live sporting event

Streaming

- playback buffer
- playback can lag tens of seconds after transmission
- still have timing constraint

Interactivity

- fast forward impossible
- rewind, pause possible!

Interactive, Real-Time Multimedia

 applications: IP telephony, video conference, distributed interactive worlds

- end-end delay requirements:
 - audio: < 150 msec good, < 400 msec OK
 - includes application-level (packetization) and network delays
 - higher delays noticeable, impair interactivity
 - session initialization
 - how does callee advertise its IP address, port number, encoding algorithms?

cation

Chair of Future Con

endowed by

Multimedia Over Today's Internet

TCP/UDP/IP: "best-effort service"

• *no* guarantees on delay, loss

Today's Internet multimedia applications use application-level techniques to mitigate (as best possible) effects of delay, loss

unicatio

Chair of Future Comm

endowed by

How should the Internet evolve to better support multimedia?

- Fundamental changes in Internet so that apps can reserve end-toend bandwidth
- Requires new, complex software in hosts & routers

Laissez-faire

- no major changes
- more bandwidth when needed
- content distribution, applicationlayer multicast
 - application layer

Differentiated services philosophy:

 Fewer changes to Internet infrastructure, yet provide 1st and 2nd class service.

What's your opinion?

A few words about audio compression

- Analog signal sampled at constant rate
- telephone: 8,000 samples/ sec
- CD music: 44,100 samples/ sec
- Each sample quantized, i.e., rounded
 - e.g., 2⁸=256 possible quantized values
- Each quantized value represented by bits
 - 8 bits for 256 values

- Example: 8,000 samples/sec,
 256 quantized values -->
 64,000 bps
- Receiver converts it back to analog signal:
- some quality reduction

Example rates

- CD: 1.411 Mbps
- MP3: 96, 128, 160 kbps
- Internet telephony: 5.3 13 kbps

A few words about video compression

- Video is sequence of images Examples:
 displayed at constant rate
 MPEG²
 - e.g. 24 images/sec
- Digital image is array of pixels •
- Each pixel represented by bits
- Redundancy
- spatial
- temporal

- MPEG 1 (CD-ROM) 1.5 Mbps
- MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < 1 Mbps)

Research:

- Layered (scalable) video
- adapt layers to available bandwidth

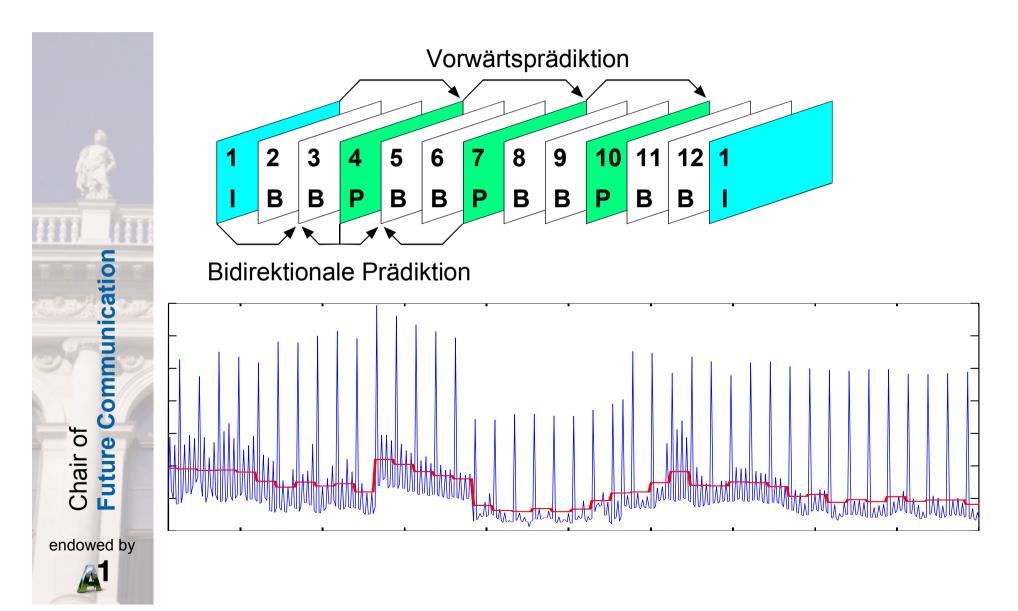
catio

Chair of Future Com

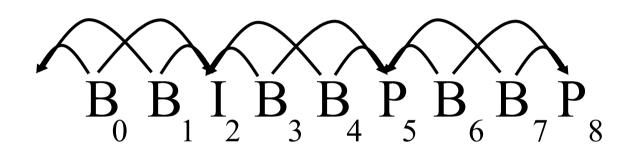
endowed by

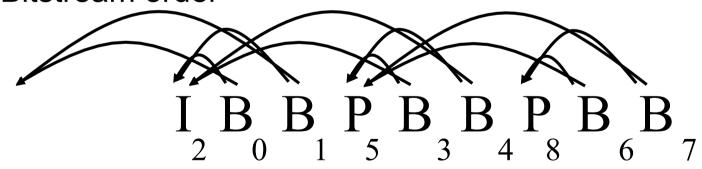
Generation of MPEG Video Sequences

- Given: sequence of digital images
- MPEG compression is combination of
 - Intra-frame compression (spatial redundancy reduction)
 - Discrete-Consine Transformation (DCT): 8x8 pixel blocks ⇒ DCT ⇒ 8x8 DC coefficients
 - Quantization
 - Zig-zag entropy encoding
 - Inter-frame compression (temporal redundancy reduction)
 - Block-based motion compensation


Inter-Frame Dependencies

- Frame types
 - Intracoded frames (I-frame)
 - Does not depend on any other frames
 - Most important information, largest frame size
 - Predicted frames (P-frame)
 - Depends on preceding I- or P-frame
 - Medium frame size
 - Bidirectional frames (B-frame)
 - Depends on preceding and succeeding I- or P-frame
 - Small frame size, no other frame depends on it
- Group of Pictures (GoP)
 - All frames following and depending on a specific I-frame


Measured Time Series of MPEG Frame Sizes



Display and Bitstream Order

• Display order

• Bitstream order

