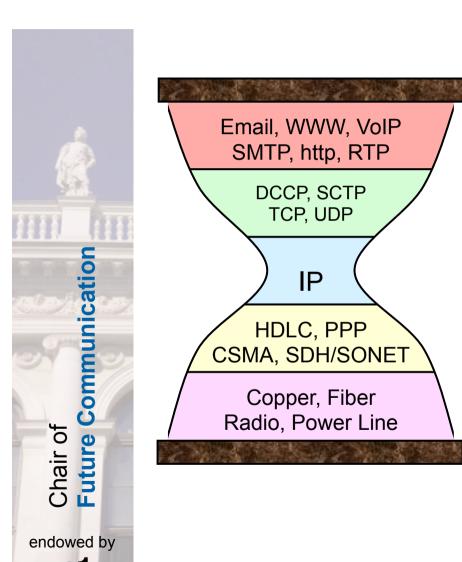


Chair of Future Communication Faculty of Computer Science Prof. Dr. K. Tutschku

Review of Networking Concepts

- <u>Overview:</u>
- Protocol layering and Internet protocol stack
- Circuit switching vs. packet switching
- Connectionless vs. connection-oriented networks, routing, forwarding, and switching
- Transport layer protocols
- Application layer
 - Sockets
 - Client-server and peer-to-peer communication
- Web services

Ication Chair of Future Com endowed by



- Das TCP/IP Referenzmodell
- Kritik an Referenzmodellen

The Hourglass Model

Everything over IP

IP over everything

Das TCP/IP Referenzmodell

Kritik an Referenzmodellen

unication

Chair of Future Comr

endowed by

Kritik an Referenzmodellen (1)

- ISO/OSI
 - Unausgeglichene Funktionsfülle der einzelnen Schichten:
 Presentation Layer, Session Layer, Application Layer
 - Hat bei Implementierung in der Praxis versagt
 - ITU-T bei der Standardisierung neuer Protokolle langsam
- TCP/IP
 - Schnelle Verbreitung über BSD/UNIX: gut implementiert, einfach zu benutzen, kostenfrei
 - IETF bei der Standardisierung neuer Protokolle schnell
 - Spezielle Beschreibung des Status Quo, nicht allgemein
- 5 Schichten-Modell
 - ISO/OSI ohne Session und Presentation Layer
 - Meist nützliche und häufig verwendete Taxonomie

unication

00

Chair of Future C

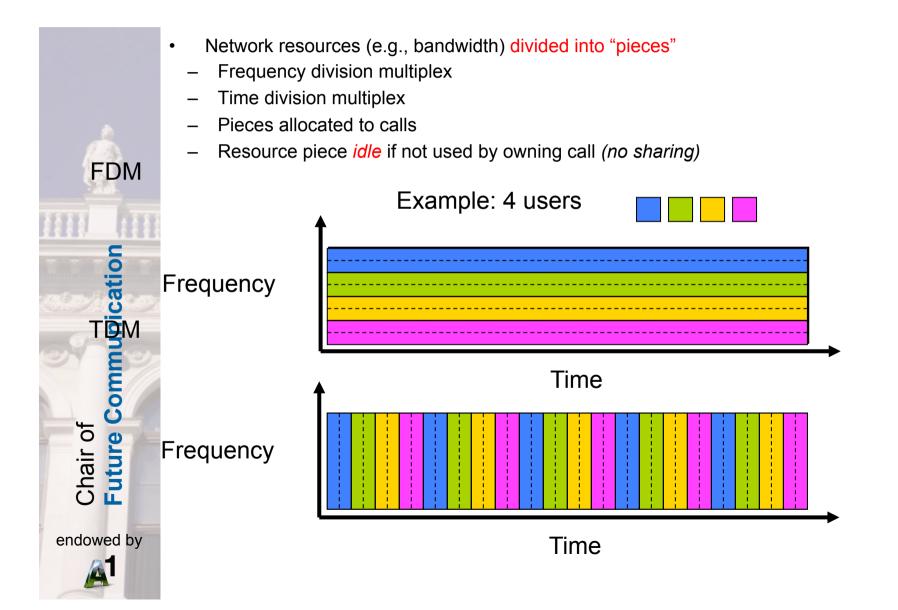
endowed by

Kritik an Referenzmodellen (2)

- Gefahr: schränken Denken ein
- Erlauben keinen Informationsaustausch zwischen den Schichten
 - Cross Layer Design (CLD): Austausch von Informationen über möglicherweise mehrere Layer
 - Beispiele f
 ür CLD
 - Ausnutzung von Physical Layer Information um Application Layer zu adaptieren bzw. zu optimieren
 - Location-aware Services
 - TCP reagiert auf ECN-bit (explicit congestion notification) in IP Header
- Einordnung von Protokollen in Schichten manchmal problematisch
 - TCP/IP/MPLS/SDH/WDM: MPLS gilt als Layer 2.5
 - TCP/IP1/UMTS-Schichten/IP2/ATM/SONET:
 - IP kommt im Network und im Link Layer zum Einsatz

Das TCP/IP Referenzmodell

Kritik an Referenzmodellen


Revision of Networking Concepts

- <u>Overview:</u>
- Protocol layering and Internet protocol stack
- Circuit switching vs. packet switching
- Connectionless vs. connection-oriented networks, routing, forwarding, and switching
- Transport layer protocols
- Application layer
 - Sockets
 - Client-server and peer-to-peer communication
- Web services

Ication Chair of Future Com endowed by

Circuit Switching: FDM and TDM

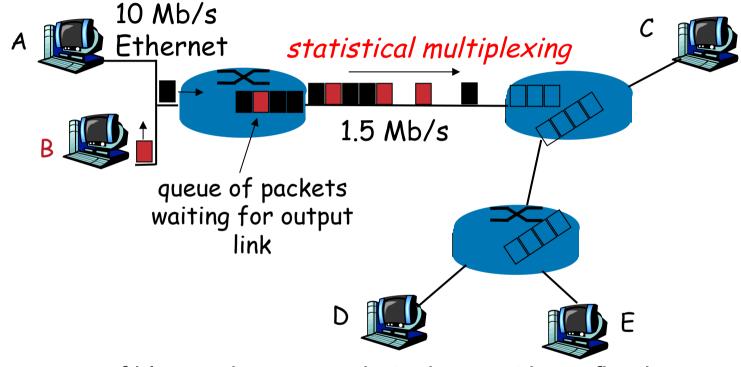
lication

Chair of Future Con

endowed by

Packet Switching

- Data stream divided into packets
 - Packet streams of different flows share network resources
 - Each packet uses full bandwidth
 - Resources used as needed
- Resource contention
 - Aggregate demand rate can exceed available capacity
 - Congestion: packets queue, wait for link use



- Store-and-forward: entire packet must arrive at router before it can be transmitted on next link
- Example
 - Link bandwidth R=1.5 Mbit/s
- Msg size L=7.5 Mbit
- Takes L/R=5 sec to transmit packet
- 3 hops \Rightarrow overall delay = 15 sec

Packet Switching: Statistical Multiplexing

- Sequence of blue and green packets does not have fixed pattern
 statistical multiplexing
- In TDM each host gets same slot in revolving TDM frame.

Packet Switching vs. Circuit Switching

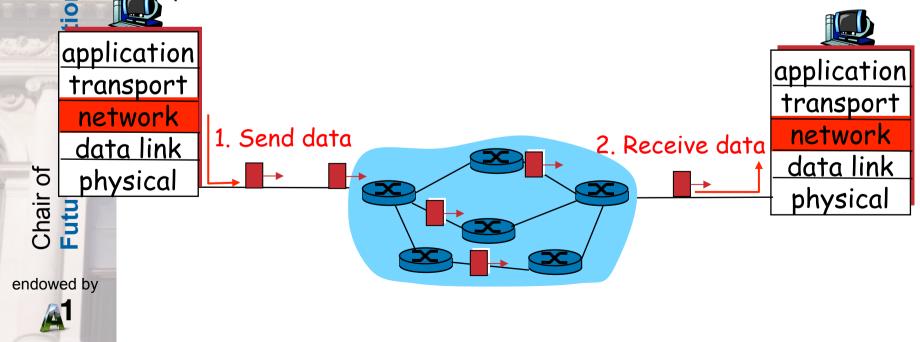
- Comparison
- Link: 1 Mbit/s
- User
 - 100 kbit/s when "active"
 - Active 10% of time
- Circuit switching: 10 users
- Packet switching: with 35 users, probability > 10 active less than . 0004
- Packet switching allows more users to use network!

- Is packet switching better than circuit switching?
- Great for bursty data
 - resource sharing
 - simpler, no call setup
- Excessive congestion
 - Packet delay and loss
 - Protocols needed for reliable data transfer, congestion control
- How to provide circuit-like behavior?
 - Bandwidth guarantees needed for audio/video apps
- Still an unsolved problem

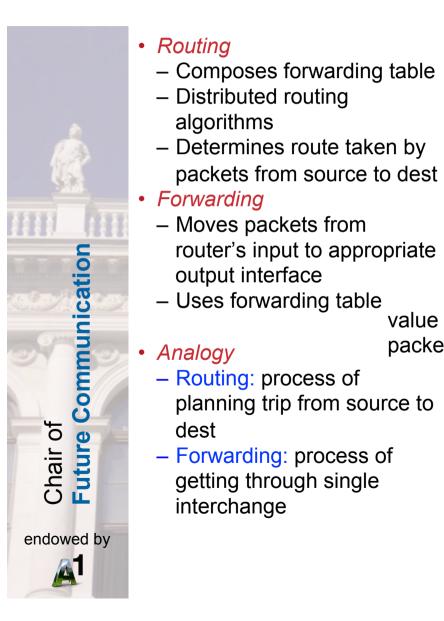
ication

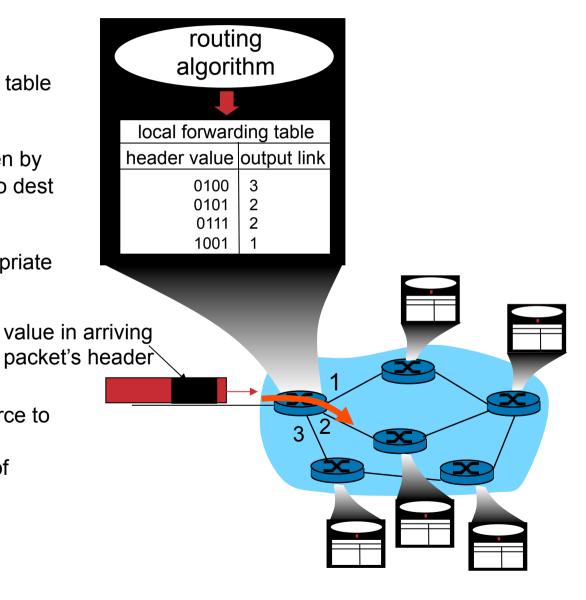
Chair of Future Con

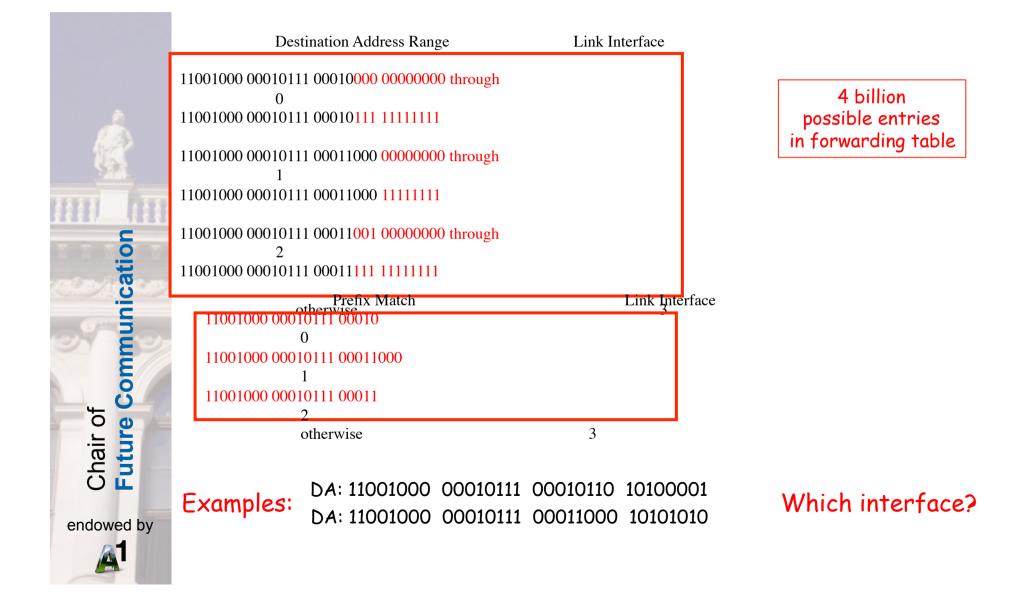
endowed by


Review of Networking Concepts

- <u>Overview:</u>
- A picture of the Internet
- Protocol layering and Internet protocol stack
- Circuit switching vs. packet switching
- Connectionless vs. connection-oriented networks, routing, forwarding, and switching
- Transport layer protocols
- Application layer
 - Sockets
 - Client-server and peer-to-peer communication
- Web services


Connectionless (Datagram) Networks


- No call setup at network layer
 - No network-level concept of "connection"
 - Routers: no per-flow state
- Packets forwarded using destination host address
 - But: packets between same source-dest pair may take different
 paths

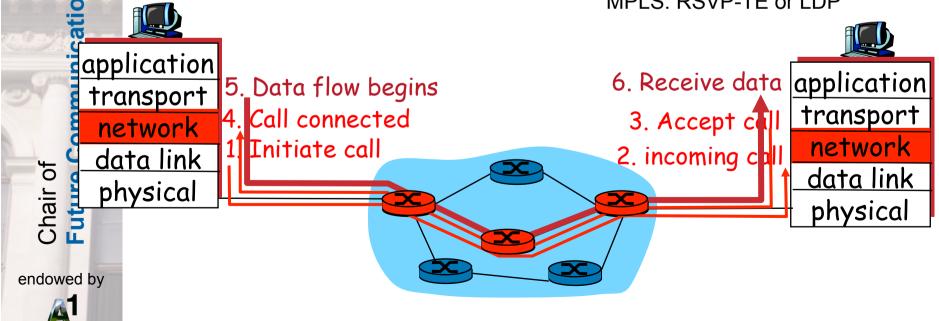

Connectionless Networks: Routing and Forwarding

Connectionless Networks: Longest Prefix Matching

nication

Chair of Future Comm

endowed by


Connectionless Networks: Intra-AS Routing

- AS: autonomous system
- Also known as Interior Gateway Protocols (IGP)
- Most common Intra-AS routing protocols:
 - RIP
 - Routing Information Protocol
 - Distance vector routing protocol based on Bellman-Ford equation OSPF
 - Open Shortest Path First
 - Link state routing protocol, Dijkstra's shortest path algorithm
 - IGRP
 - Interior Gateway Routing Protocol
 - Cisco proprietary
- IGPs follow usually the shortest paths with regard to a link cost metric
 - Hop count
 - Latency

Connection-Oriented Networks (Virtual Circuits)

- Characteristics of a virtual circuit (VC)
 - Fixed path from source to destination
- Packets belonging to VC carry a VC number
- Forwarding tables along the path keep entry for each VC
- Connection setup: 3rd important function (next to routing and forwarding) in connection-oriented networks
- Signaling protocols for VC setup
 - Used to setup, maintain, and teardown VC
 - Used in ATM, frame-relay, X.25, in MPLS: RSVP-TE or LDP

Connection-Oriented Networks: Forwarding Table

ication	Forwaraina tanie in		VC number 12 22 32 1 2 3 interface number		
	Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #	
Chair of Future Commun	1 2 3 1 	12 63 7 97 	3 1 2 3 	22 18 17 87 	
endowed by					

Chair of Future Communication

endowed by

Connectionless vs. Connection-Oriented Networks

- Connectionless networks
 - Routers are not flow-aware
 - Packets are routed solely based on destination adress
 - Example: IP datagrams
 - Simple operations
 - Difficult to add quality of service (QoS)

- Connection-oriented networks
- Connections: setup, data transmission, teardown
- Routers keep per connection state
- Explicit paths
 - Deviation from shortest path routing possible
- Example: label switched paths (LSPs) in MPLS
- Used for traffic engineering
- Easier support of QoS since flows are known

Review of Networking Concepts

- <u>Overview:</u>
- Protocol layering and Internet protocol stack
- Circuit switching vs. packet switching
- Connectionless vs. connection-oriented networks, routing, forwarding, and switching
- Transport layer protocols
- Application layer
 - Sockets
 - Client-server and peer-to-peer communication
- Web services

Ication Chair of Future Com endowed by

unication

Chair of Future Com

endowed by

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

- Point-to-point
 - One sender, one receiver
- Flow control
 - Sender will not overwhelm receiver
- Congestion control
 - Sender reduces its rate in case of congested network
- Connection-oriented
 - Handshaking (exchange of control msgs) inits sender, receiver state before data exchange

- Pipelined
 - TCP congestion and flow control set window size
- Send & receive buffers
- MSS: maximum segment size
- Reliable, in-order byte stream
 - No "message boundaries"
- Full duplex data
 - Bi-directional data flow in same connection
- Does not provide: timing, minimum bandwidth guarantees

Chair of Future Communication

endowed by

UDP: User Datagram Protocol [RFC 768]

- Very simple, connectionless transmission protocol
- No handshaking between UDP sender, receiver
- Each UDP segment handled independently of others
- Multicast possible
- Unreliable data transfer between sending and receiving process
 - Packet loss
 - Packets delivered out of order to app

- Does not provide
 - Connection setup
 - Reliability
 - Flow control
 - Congestion control
 - Timing
 - Bandwidth guarantee
- Why is there a UDP?
 - No connection establishment
 - Fast transmission
 - Simple
 - No connection state at sender, receiver
 - Small segment header
 - No congestion control: UDP can blast away as fast as desired

Chair of Future Communicatio

endowed by

What Transport Service is Needed?

Data loss

- some apps (e.g., audio) can tolerate some loss
- other apps (e.g., file transfer, telnet) require 100% reliable data transfer

Timing

some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

Bandwidth

- some apps (e.g., multimedia) require minimum amount of bandwidth to be "effective"
- other apps ("elastic apps") make use of whatever bandwidth they get

Transport Service Requirements of Common Apps

	Application	Data loss	Bandwidth	Time sensitive
	file transfer	no loss	elastic	no
	e-mail	no loss	elastic	no
	Web documents	no loss	elastic	no
r	eal-time audio/video	loss-tolerant	audio: 5kbps-1Mbps video:10kbps-5Mbps	yes, 100's msec
	stored audio/video	loss-tolerant	same as above	yes, few secs
	interactive games	loss-tolerant	few kbps up	yes, 100's msec
2	instant messaging	no loss	elastic	yes and no

mmunication Chair of Future Cor endowed by

endowed by

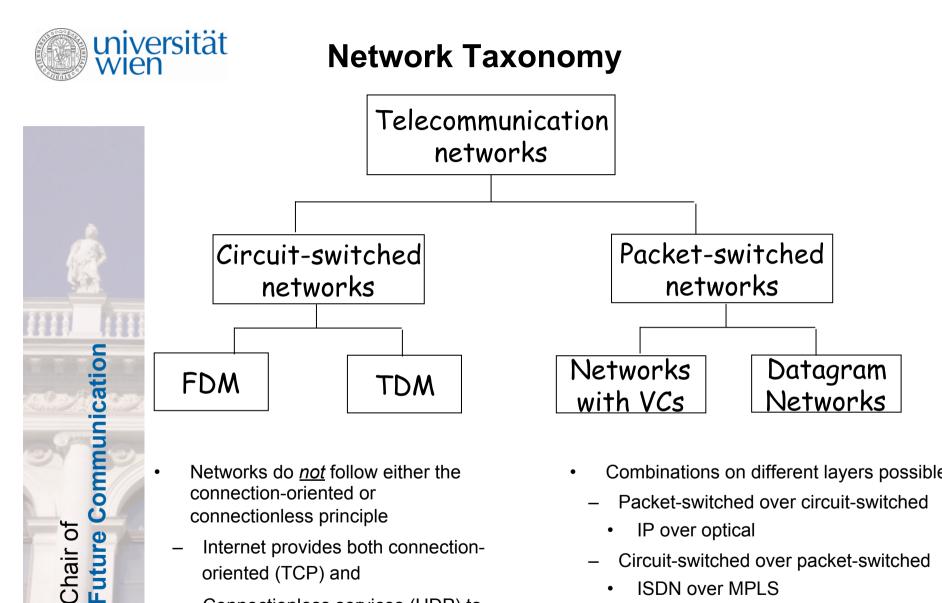
Internet apps: application, transport protocols

	Application	Application layer protocol	Underlying transport protocol
Ŕ	e-mail remote terminal access	SMTP [RFC 2821] Telnet [RFC 854]	TCP TCP
11 A	Web	HTTP [RFC 2616]	TCP
2	file transfer	FTP [RFC 959]	ТСР
ication	streaming multimedia	proprietary (e.g. RealNetworks)	TCP or UDP
Communi	Internet telephony	proprietary (e.g., Dialpad)	typically UDP
Chair of Future C			

Stream Control Transmission Protocol (SCTP, RFC2960)

- High level introduction in RFC3286
- Transport protocol
- Similarities with UDP
 - Message-orientation (no byte stream as in TCP)
- Similarities with TCP
 - Reliable, in-order delivery
 - Congestion control
- Multi-streaming
 - Transmission of several streams over a single SCTP connection, e.g. two images
- Uses per-stream sequence numbers for messages
 - If a packet of a specific stream is lost, only this stream suffers from retransmission (no head of the line blocking)
- Multihoming support
 - Both sender and receiver may have multiple IP addresses
 - Transparent failover if one of these addresses fails
- Path selection and monitoring

unication Chair of Future Comm endowed by


mmunication

Chair of Future Co

endowed by

Datagram Congestion Control Protocol (DCCP, RFC4340)

- Transport protocol
- Similarities with UDP
 - Message-orientation
 - No reliable in-order delivery
 - Similarities with TCP
 - Connection-orientation
 - Congestion control
- Makes use of ECN
- More appropriate than TCP for realtime data
 - No retransmissions for in-order delivery
 - Better timeliness for remaining data

- Networks do not follow either the connection-oriented or connectionless principle
 - Internet provides both connectionoriented (TCP) and
 - Connectionless services (UDP) to apps

endowed by

- Combinations on different layers possible
 - Packet-switched over circuit-switched
 - IP over optical
 - Circuit-switched over packet-switched
 - **ISDN** over MPLS

ication

Chair of Future Commu

endowed by

Where Do Which Principles Apply?

Internet

- Connectionless IP datagram forwarding
- Transport layer
 - Connectionless UDP
 - Connection-oriented TCP
- "Smart" end systems (computers)
 - Can adapt, perform control, error recovery
- Simple inside network, complexity at "edge"
- Consequence of TCP
- "Elastic" service
- No strict timing
- Many link types
 - Different characteristics
 - Uniform service difficult

Asynchronous Transfer Mode (ATM)

- Connection-oriented ATM cell forwarding
 - Fixed size cells (48+5 bytes)
 - Virtual path connections (VPCc)
 - Virtual channel connections (VCCs)
 - Today used as link layer below IP
- Evolved from telephony
- Human conversation
- Guaranteed service needed
- Strict timing, reliability requirements
- "Dumb" end systems (telephones)
- complexity inside network

Multiprotocol Label Switching (MPLS)

- Connection-oriented packet forwarding
- Variable size packets
- Often used as link layer below IP
- Simple end-to-end measurements
- Hides network topology from traceroute