## Business Intelligence SS 2017

**Text Mining** 

W. Grossmann

#### Content

- Introduction and Terminology
- Data Preparation and Modelling
- Descriptive Analysis of the DTM
- Analysis of a Text Corpus
- Further Aspects of Text Mining

#### Introduction and Terminology, Data

- Text documents may be of different origin
  - Reports, abstracts, journal articles, blogs, tweets, email,...
- There are many different formats
  - .txt, .pdf, .doc, html, xml,...

- Two different views:
  - Metadata view: a description of the document
    - There exist a number of standards for describing resources
    - One popular standard is the Dublin Core Metadata Initiative (DCMI): <a href="http://dublincore.org/">http://dublincore.org/</a>

Example for Metadata using R:

author: Rinderle-Ma, Grossmann

datetimestamp: 2014-09-28 08:09:19

description: Brief Task description

heading: 1.3.5 Evaluation and Reporting Task

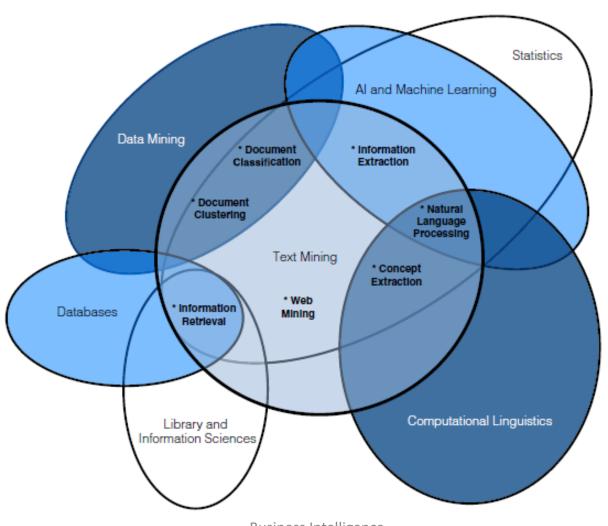
id: 11

language : en

origin: Fundamentals of Business Intelligence

V1.0Text Mining (Text Analytics view)

 Knowledge and techniques from different areas are combined (graphic from Miner et al. Practical Text Mining)



## Introduction and Terminology, Levels of Text Mining

- Text Mining can be done at different levels
  - Word level
  - Sentence level
  - Document level
  - Corpus level = Collection of documents
- A Document can be defined in different ways:
  - Sections of a document, paragraphs in text, ...
  - A tweet, an email,...

# Introduction and Terminology, Analytical Goals

We will focus on analysis of a corpus

#### Analytical Goals in Text Mining

- Descriptive Goals: Description of the contents of the documents in a corpus based on properties of word frequencies in the documents.
- Understanding goals: Find clusters of documents which are similar with respect to content identify the topics in these groups.

# Introduction and Terminology, Methodology

Template: Text Mining for a Corpus

- Relevant Business and Data: A text corpus defined by a collection of text documents
- Analytical Goals:
  - Description of the documents in the corpus
  - Clustering the documents in the corpus
  - Finding topics of the corpus
- Modeling Task: Definition of the document term matrix by appropriate data preparation steps
- Analysis task:
  - Description of Corpus: Determination of type-token relation and association measures; visualization of the content in the corpus using word clouds and correlation plots.
  - Clustering documents: Use cluster analysis methods of chapter 5 for cluster the documents based on the document term matrix.
  - Topic Models: Define a number of topics and find the probability of assignment of the documents to the topics.
- Evaluation and Reporting Task: Represent the results of the analysis by word clouds, by correlation plots and by characterization of the topics with terms.

## Data Preparation and Modeling, Transformations

- Usually not the original text is used for text mining but a transformed (purged) text
- Basic standard transformations
  - Removal operations (punctuation, numbers, special characters (@, /,...), email address,
  - White space operations
  - Lower case letters
  - Stop words (articles, prepositions,...)
  - Stemming (words without endings)

## Data Preparation and Modeling, Transformations

- Example sentence
  - Its main goals are the interpretation of the results in reference to domain knowledge and coming to a decision of how to proceed further.
- Transformed sentence
  - main goals interpretation results reference domain knowledg coming decision proceed

- After the transformations the corpus consists of a number of documents with preprocessed terms
- These terms are organized in a list of tokens and the frequency of the tokens by tokenization
  - A token is defined by a n-gram = n contiguous words in the document, usually 1-grams(one term) or bigrams (2 words)

 The basic unit for analysis is the document term matrix (DTM)

$$DTM = (t_{ij}), \quad i = 1,...,d, \ j = 1,...,n$$
  
 $t_{ij} = frequency \ of \ term \ j \ in \ document \ i$ 

- Sometimes also the transposed matrix is used and called TDM(term document matrix)
- Other name for the DTM: Bag of words

 An alternative to the DTM is often to replace the frequency simply by an indicator

$$DTMI = (d_{ij}), \quad i = 1,...,d, \ j = 1,...,n$$

$$d_{ij} = \begin{cases} 1 & \text{if term j occurs in document i} \\ 0 & \text{otherwise} \end{cases}$$

- Usually the DTM has many columns and contains many terms with low frequency
- General assumption:
  - Frequency of a term informs about the importance of the term for the contents
  - There are terms occurring frequently due to linguistic reasons, for example verbs like have, is,

...

- Solution of the problem:
  - Define upper and lower thresholds for the terms
  - Use instead of the DTM the TF-IDF = Term
     frequency inverse document frequency matrix
- Inverse document frequency (IDF) = Number of documents divided by the frequency of the documents which contain the term
  - Reduces the importance of terms which occur in many documents

Formulas:

$$\begin{split} D &= \left\{ d_1, d_2, \ldots \right\} Documents \\ W &= \left\{ w_1, w_2, \ldots \right\} Words \\ IDF_{ij} &= \frac{\mid D \mid}{1 + DF_{ij}}, \quad DF_{ij} = card \left\{ d_i : w_j \in d_i \right\} \\ TF &- IDF_{ij} = t_{ij} * \log(IDF_{ij}) \end{split}$$

 TF-IDF is of special interest for key-words differentiating between documents

## Descriptive Analysis of the DTM, Word Clouds

- A useful representation of a DTM is using a word cloud
  - Representation of the terms in the DTM with size according to the frequency of the terms
  - Usually the most frequent terms are in the center
  - Terms can be also rotated and colored

## Descriptive Analysis of the DTM, Word Clouds

Example of a word cloud

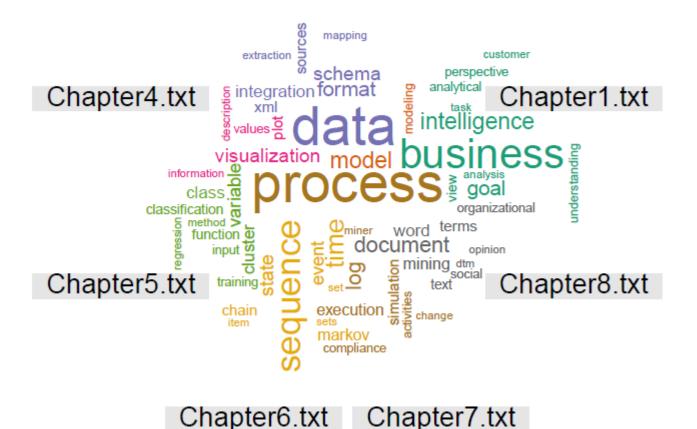


## Descriptive Analysis of the DTM, Word Clouds

- For comparison of documents a comparison cloud is a useful tool
  - The documents are organized in an outer circle in the graphic
  - Terms are shown with size according to their frequency and are positioned according to their occurrence in the documents

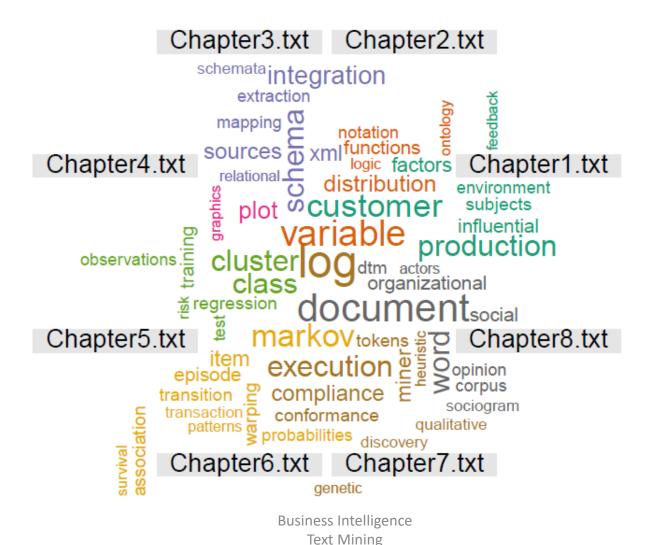
## Descriptive Analysis of the DTM, Comparison Cloud for terms

Chapter3.txt Chapter2.txt



Business Intelligence Text Mining

# Descriptive Analysis of the DTM, Comparison Cloud for TF-IDF



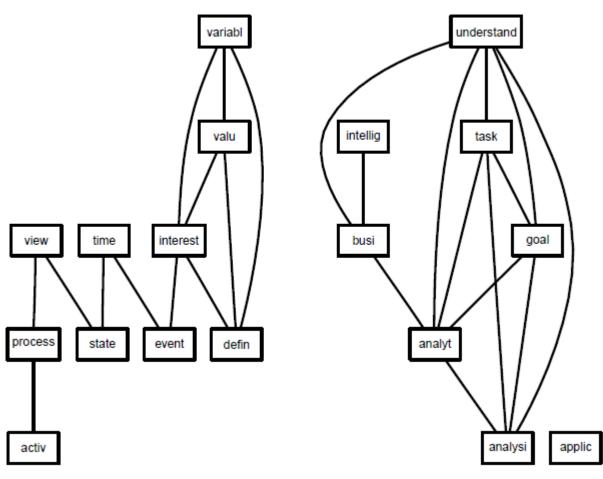
23

## Descriptive Analysis of the DTM, Associations between terms

- Another way to describe the contents of a the document is to use correlation between the term frequencies in the different documents
- One can use also the indicator matrix for such associations

## Descriptive Analysis of the DTM, Associations between terms

Example
 of association
 above 0.7 for



#### Analysis of a Text Corpus, Clustering

- Cluster analysis of text data is based on the definition of similarities between documents
- For definition of the similarity the most popular measure is the cosine measure of the term frequencies in the documents

$$sim(d_i, d_j) = \frac{t_{i\bullet} \cdot t_{j\bullet}}{\|t_{i\bullet}\| \cdot \|t_{j\bullet}\|}$$

 $t_{i\bullet} = frequency\ vector\ of\ terms\ in\ document\ i$ 

#### Analysis of a Text Corpus, Clustering

- Based on this distance one can apply any cluster analysis algorithm (hierarchical or kmeans)
- Many other methods have been proposed
  - Co-Clustering:
    - Interpret the DTM as a bipartite graph: Terms and documents
    - Partition the two sets in such a way that the edges between different clusters are minimized

#### Analysis of a Text Corpus, Classification

- Classification of documents can be done by interpretation of the terms as variables (features) describing the documents
  - Hence the DTM is a classical feature matrix for the documents and we can apply any classification algorithm
  - Frequently the indicator version DTMI is used instead of the DTM
  - Classical application: Spam detection in emails

#### Analysis of a Text Corpus, Topic Models

 Topic models is an advanced method for grouping documents and terms into topics

#### Model:

- Define a number of topics
- For each document a distribution of the topics is assumed
- For each topic the terms have a topic specific characteristic distribution

#### Analysis of a Text Corpus, Topic Models

- A topic model estimates the parameters of the distributions of the topics within the different documents and identifies the most frequent terms in each topic
- Usually the algorithm is applied for a different number of topics and the results are compared

## Further Aspects of Text Mining, Analysis at the Word Level

- Words allow the representation of concepts with different words (synonyms)
- Concepts have many times and ordering
  - Hypernyms: terms representing a narrower concept
  - Hyponyms: Terms representing a broader concept
  - Part of relation between concepts

# Further Aspects of Text Mining, Analysis at the Word Level

- Representation of such relations in a database for words
- For English terms WordNet
   (<a href="http://wordnet.princeton.edu">http://wordnet.princeton.edu</a>) is an
   important resource which is free available
  - Examples: business, model, busy

### Further Aspects of Text Mining, Analysis at the Sentence Level

 Analysis at the sentence level allows the syntactic analysis of a sentence

POS = Part of Speech Tagging

- Taggers identify the role of the words in a sentence
- Apache Open NLP is a frequently used tool (available in R) (<a href="https://opennlp.apache.org/">https://opennlp.apache.org/</a>)

### Further Aspects of Text Mining, Analysis at the Sentence Level

For tagging a standard are the Penn Treebank
 Tags

(<a href="http://web.mit.edu/6.863/www/PennTreebankTags.html">http://web.mit.edu/6.863/www/PennTreebankTags.html</a>)

• Example:

#### Further Aspects of Text Mining, Analysis at the Sentence Level

Example

```
The evaluation and reporting task looks at the analysis results from a global business perspective.

{(TOP

(S

(NP (DT The) (NN evaluation) (CC and)
```

```
(NP (DT The) (NN evaluation) (CC and)

(NN reporting) (NN task))

(VP (VBZ looks)

(PP (IN at) (NP (DT the) (NN analysis)

(NNS results)))

(PP (IN from) (NP (DT a) (JJ global)

(NN business) (NN perspective))))}
```

### Further Aspects of Text Mining, Keyword Extraction

- Keyword extraction is usually done in a number of steps for creating features
  - TF-IDF for keyword search in a corpus
  - POS
  - Identifying words at the beginning of a text
  - Relation of the words to words in a thesaurus
  - Using such features each word gets a score and high scores define keywords
  - Learning the scores is based on supervised learning

- Opinion Mining and Sentiment Analysis
- General setup
  - Basic unit is a document (cf. questionnaire)
  - Opinion holder: author of the document (cf. surveyed person)
  - Objects and features about which an opinion is stated (cf. questions in the questionnaire)
  - Polarity of the opinion (cf. answers in the questionnaire)

- Main tasks in opinion mining
  - Finding in a document all opinionated sentences
  - Identify the objects and features about which an opinion is stated
  - Classify the opinion (polarity)

- Finding opinionated sentences
- Different cases
  - Direct opinion (frequently based on adjectives like good, nice, bad, ...)
  - Negation (non, not, negative prefixes)
  - Comparative opinion (better worse, comparative form of adjectives, ...)
- POS is of utmost importance

- Identification of objects and features
  - Many times only one object, in simple cases in the header of the document (metadata)
  - One of the first nouns in a document represent the objects
  - Features can be identified using data bases which characterize objects, for example products or movies
  - Knowledge about synonyms, hypernyms and hyponyms is necessary (WordNet)

- Opinion classification
  - Polarity is usually based on wordlists or dictionaries for adjectives stating the polarity (twitter)
     <a href="http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon">http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon</a>
  - A more elaborated dictionary is SentiWordNet (<a href="http://sentiwordnet.isti.cnr.it/">http://sentiwordnet.isti.cnr.it/</a>)
  - Other methods are based on statistical classification

- Problems with opinion mining
  - Opinion is not so well defined as objective features of products
  - Opinion is based on common sense (cf. SenticNet for such an approach <a href="http://sentic.net/sentics/">http://sentic.net/sentics/</a>)
  - Terms like precision and recall are difficult to apply
  - What is the group of opinion holders?
  - Can we identify spam opinion?