Business Intelligence SS 2017

Modeling in BI

W. Grossmann

Contents

- Models an Modeling in BI
- Logical and Algebraic Structures
- Graph Structures
- Analytical Structures
- Models and Data

Models and Modeling in BI

• There are many different models used in BI

- Examples you know:

Models and Modeling in BI – Definition of a Model

- Model Definition: Models represent some part of the business process and allow precise formulation of interesting questions (Analytical Goals)
 - How can we realize the representation?
 (*representation function*)
 - How should we formulate the representation?
 ("model language")

Models and Modeling in BI – Representation Function of Models

- Models of Phenomena
 - Phenomena: Features of the business process interesting from an analytical point of view
 - Models define a picture of the phenomena (caricatures)
 - Idealized models, e.g., control flow of the business process, a treatment process, a course design
 - Analogical models: Overtake ideas from other sciences, e.g., gravity model for relations between persons in dependence of distance
 - Phenomenological models: Statistics, e.g. regression

Models and Modeling in BI – Representation Function of Models

- Models of Data
 - We have no precise idea about the models, but only a number of candidate models for the empirical data
 - The task is to learn the most appropriate model (Machine Learning, Data Mining)
 - Simple example: Churn management:
 - Which variables influence the churn behavior of a customer, e.g., age, sex, marital status, income,?
 - How should we define the relation between churn behavior and theses variables?

Models and Modeling in BI – Representation Function of Models

- Models of Theories
 - Each application domain of BI has specific domain knowledge, usually defined by concepts and relation (logical relations) between the concepts
 - Concepts and logical relations define a formal system (ontology)
 - Understanding this formal system as a theory data instances are models of this theory

 \rightarrow Database models

Models and Modeling in BI – Languages for Models

- Corresponding to the multitude of models there are different formulations (languages) used:
 - UML or ER-modeling for data
 - BPMN for formulation of the control flow
 - Statistics in case of modeling customer behavior
 - Connectedness (reachability) in a graph

Models and Modeling in BI – Formulation of Models

- Each language has its own semantic allowing definition of certain model elements an formulation of generic questions
 - Queries in a database
 - Simultaneous occurrence of two events in a business process
 - Strength of association between two variables
 - Graph models for social networks

Models and Modeling in BI – Formulation of Models

- Generic questions can be formulated in different languages
 - Example: Relations between attributes
 - Formulate a query in a data model and represent the result as a table
 - Define a regression model and formulate the relation as an equation
 - Use a graphical language and visualize the relation in a scatterplot

Models and Modeling in BI – Model Structures

- Putting all these things together leads to the concept of a *model structure* composed of:
 - Model Language:
 - Syntax defines basic elements and the rules how to compose model elements
 - Semantic defines the meaning of the elements in the language, independent from any domain
 - Notation for communication of the expressions in the language

Models and Modeling in BI – Model Structures

- Model Elements: Certain expressions in the model language, useful for describing facts about the business process
- Generic questions: Questions formulated in the semantic of the model language about properties of model elements
 - Generic questions can be answered by specific analysis techniques

Models and Modeling in BI – Modeling

- A mapping of some part of the domain semantic of a business process into a certain model structure ("*Conceptual Modeling*")
 - Examples for domain concepts and relations:
 - Health Care Use Case:
 - Higher Education Use Case:
 - CRM Use Case:

Models and Modeling in BI – Modeling

- Definition of a model configuration: admissible expression in a model structure which formulation of the analytical goal in questions about the model configuration
- Connection of model configuration with observations: data about the instances of the business process have to fit to the model configuration, i.e., views and perspectives
- Definition of model variability: Usually data are blurred due to noise or statistical variability

Models and Modeling in BI – Model Assessment and Quality

- Quality criteria for business process models
 - Correctness: model is syntactical correct and mapping of domain semantic and model semantic is appropriate
 - Relevance: model complies with intended function, i.e., explain past observations and predict future observations
 - Economic efficiency: trade-off between complexity and costs (Occams razor)
 - Clarity: model can be understood by users
 - Comparability: model fits in the overall analysis framework of the business process

Models and Modeling in BI – Model Assessment and Quality

- Quality criteria for empirical models
 - Objectivity: Results are independent of the person using the model
 - Reliability: results of the model can be reproduced
 - Validity: model is useful from a practical point of view
 - Content validity: model represents phenomenon under consideration
 - Criterion validity: high correlation between model results and other external properties
 - Construct validity: new results can be derived from model

Models and Modeling in BI – Models and Patterns

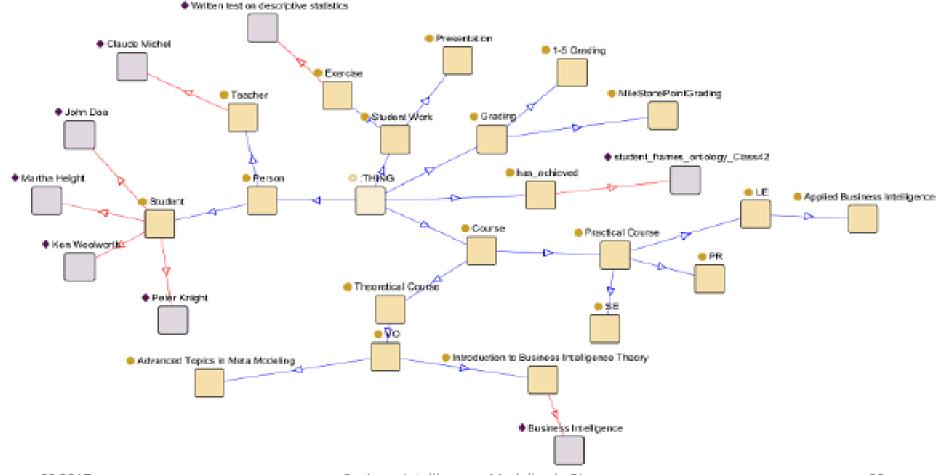
- Patterns describe local behavior whereas models describe global behavior
 - Examples:
 - Medical treatment process: a pattern of co-occurrence of certain medications
 - Customer relationship: A pattern of occurrence of certain combination of variables like outliers

- Language:
 - Propositional logic and predicate logic
 - Individual constants (names), e.g., "John Dee" "Business Intelligence"
 - Variables: placeholders for constants, e.g., "Student", "Course"
 - Functions: operating on constants or variables, e.g.
 "grade(Student) = passed"
 - Predicates: define properties for the individual constants, e.g., "AttendsBI"
 - Quantifiers ("for all (\forall) ", "exists (\exists) ")

• Language:

- Propositional logic and predicate logic

- Definition of terms by individual constants, individual variables, and functions
- Generate atomic formulas by a predicate symbol followed by a number of terms for which the predicate is applicable, e.g. "AttendsBI [John Dee]"
- Build well formed formulas using propositional calculus and quantifiers, e.g.,
- ∃(Student)(∀(Course) grade(Student, Course) =passed)


- Model elements and generic questions
 - Building expressions according to predicate logic
 - Assign truth values to the expressions (interpretation)
 - If the interpretation results in truth values TRUE for all possible assignments of the free variables we call the interpretation a model
 - Generic questions are whether a well formed formula is true

- Modeling using logical structures tries to capture domain knowledge in a logical form
- The simplest form are terminology systems like taxonomies

• Ontologies:

"A specification of a conceptualization"

- OWL:
 - T-Box: Vocabulary of a domain as a logical theory
 - A-Box: Assertion about the domain, which has to be checked
 - Uses the open world assumption, i.e., anything can be entered in the T-Box unless it violates constraints

- Frames
 - Representation in an object oriented style
 - For each object a number of slots are defined for attributes of the objects
 - Frames use the closed world assumption, i.e., a statement is true if its negation cannot be proven within the system
 - Example : "All birds can fly" (closed world)

"There exist non flying birds" (open world)

Model Structures – Graphs

- Language:
 - Syntactic elements:
 - nodes (vertices)
 - Edges (directed, undirected)
 - Labels for edges (e.g., "distance") or nodes (e.g., "degree")
 - Notation:
 - Numeric representation (adjacency matrix)
 - Visual representation

Model Structures – Graphs

- Model elements:
 - Special kinds of graphs, e.g., trees, series parallel networks, bipartite graphs
 - Connected graphs (path)
- Generic questions
 - Generic questions refer to properties of the graph and can be answered by well known algorithms like spanning tree, shortest path, best matching of nodes

Model Structures – Graphs

- Modeling using graph structures
 - Business process modeling and notation (BPMN)
 - Petri nets

- Language:
 - Variables in one or more dimensions
 - Mathematical functions
- Model elements:
 - Classical functions (linear functions, logarithm, exponential functions,...)
 - Norm of a vector, distance

$$||\mathbf{x}|| = \sum_{i=1}^{p} x_i^2, d(\mathbf{x}, \mathbf{z}) = ||\mathbf{x} - \mathbf{z}|| = \sum_{i=1}^{p} (x_i - z_i)^2$$

- Model elements:
 - Inner product

$$(\mathbf{x}^t \cdot \mathbf{z}) = \sum_{i=1}^p (x_i \cdot z_i)^2$$

 Linear functions in more than one variable (matrices)

$$f(\mathbf{x}) = B\mathbf{x}$$

- Generic questions:
 - Properties of functions
 - Minimization and maximization of a function
 - Value of the minimum: $z = \min f(\mathbf{x})$
 - Argument of the minimum:

$$\mathbf{x}_m = \arg\min f(\mathbf{x}) \ (f(\mathbf{x}_m) = z)$$

- Generic questions:
 - Matrix factorization: If C is a symmetric positive definite matrix (covariance matrix) then we can represent this matrix in the form:

$$C = P \cdot D \cdot P^t$$

Here D is a Diagonal matrix and P is a matrix with orthogonal columns

This is frequently used for dimensionality reduction

Model Structures – Analytical Models, Probability

- Language:
 - Events, Calculus of events: E
 - Probability of events

$$P(E), \quad odds(E) = \frac{P(E)}{1 - P(E)}$$

- Random variables as model for measurement: X
- Probability Distribution:
 - Distribution function: $F(x) = P(X \le x)$
 - Density function and probability function: p(x)We interpret the density as likelihood of an observation

Model Structures – Analytical Models, Probability

- Language:
 - Conditional probability and independence:

 $p(x \mid y) = p(x, y) / p(y)$

- Two variables are independent if

p(x, y) = p(x)p(y)

– Bayes Theorem:

 $p(x \mid y) = p(y \mid x) / p(y)$

 Interpretation of Bayes Theorem in the discrete case: Compute column percentages from row percentages

Model Structures – Analytical Models, Statistics

- Language:
 - Statistical units (observation units)
 - Population
 - Observable variable
 - Transfer the concepts of probability to observations, e.g., "distribution" to "sample distribution" ("empirical distribution")

Model Structures – Analytical Models, Statistics

- Model elements and generic questions:
 - Descriptive methods
 - Inferential methods
 - Estimation
 - Testing
 - Confidence regions
- Modeling methods
 - Regression

Models an Data – Data Generation

- In BI we have usually *secondary data*, i.e., data which have been collected for other purposes
 - Transactional data
 - Administrative data
 - Web data,...
- An important question for interpretation of results is defining the population which is represented by the data (e.g., tweets or evaluations on portals)
- Measurement of the data

Models an Data – Temporal Aspects

Elements of the Knowledge Based Temporal Abstraction Method

- 1. *Time stamps T_i are the basic primitives with a predefined granularity and a well defined zero.*
- 2. Time intervals $T = [T_{start}, T_{end}]$ are defined as pairs of time stamps for start and end. Time points are zero length intervals.
- 3. An *interpretation context* ξ is a proposition that can change the interpretation of parameters within the scope of a time interval interval. Interpretation contexts can be nested.
- 4. A *context interval* $< \xi, I >$ define time intervals for which the interpretation context holds.
- 5. An *event proposition e* represents the occurrence of an external volitional action or process and has to be distinguished from a measurable datum.
- 6. An event interval < e, I > represents the temporal duration of an event e.

Models an Data – Temporal Aspects

- 7. A *parameter schema* π is a measurable aspect of the state of the world (states of a process) with values in some domain $v \in V_{\pi}$. Parameter schemas may be of different type: primitive parameters (measurable data), abstract parameters (concepts), constant parameters (instant specific, or instant independent).
- 8. A *parameter proposition* $< \pi, v, \xi >$ defines the values of parameters in a context.
- 9. An *abstraction function* $\theta \in \Theta$ maps parameters into abstract parameters.
- 10. A *parameter interval* $< \pi, v, \xi, I >$ denotes the value *v* of the parameter π in the context ξ during time interval *I*.
- 11. An *abstraction* is a parameter or a parameter interval.
- 2. An *abstraction goal* $\psi \in \Psi$ represent a specific intention or goal.
- 13. An *abstraction goal interval* $\langle \psi, I \rangle$ represents the ides that abstraction goal ψ holds in interval *I*.
- 14. Induction of context intervals allows the induction of events, parameters, or ab-

Models an Data - Quality

Quality dimensions

- Relevance: Relevance measures in how far the data are useful in the intended context.
- Accuracy: Accuracy is the degree of conformity of a measure to a standard or a true value.
- Completeness: Completeness is a characteristic measuring the degree to which all required data is known. with respect to depth, breath and scope.
- Timeliness: Data coming early or at the right time, appropriate or adapted to the times or the occasion.
- Consistency: Consistency is expressed as the degree to which a set of data is equivalent in redundant or distributed databases.
- Coherence: Coherence refers to the adequacy of the data to be reliable combined in different ways and for various uses.
- Reliability: Reliability is a characteristic of an information infrastructure to store and retrieve information in an accessible, secure, maintainable, and fast manner.