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General section 

1. Summary 

The objective in donor imputation is to fill in the missing values for a given unit by copying observed 

values of another unit, the donor. Typically, the donor is chosen in such a way that it resembles the 

imputed unit as much as possible on one or more background characteristics. The rationale behind this 

is that if the two units match (exactly or approximately) on a number of relevant auxiliary variables, it 

is likely that their scores on the target variable will also be similar. 

2. General description
1
 

2.1 Introduction to donor imputation 

The objective in donor imputation is to fill in the missing values for a given unit (the recipient) by 

copying the corresponding observed values of another unit (the donor). The term hot deck donor 

imputation applies when the donor comes from the same data set as the recipient. In the context of 

business statistics, this is the most commonly encountered form of donor imputation. If the donor is 

taken from another data set, this is known as cold deck donor imputation. Most applications of cold 

deck imputation use data that were collected at a previous point in time. Often, the donor record is 

then simply an earlier observation of the recipient unit itself. This type of donor imputation is only 

valid for variables that can be considered more or less constant between observation times; its 

applicability in the context of business statistics is therefore limited. In the remainder of this module, 

we shall focus on hot deck imputation. 

Letting iy  denote the score of the th
i  unit on the target variable y  and using the index d  for a donor, 

we can write the generic formula for hot deck donor imputation as: 

 di yy =~ .               (1) 

Typically, one searches for a donor that resembles the recipient as much as possible on one or more 

auxiliary variables. There exist different ways to select a donor, leading to different variants of hot 

deck imputation. In this module, we shall describe random and sequential hot deck imputation 

(Section 2.2), nearest-neighbour imputation (Section 2.3), and predictive mean matching (Section 

2.4). Some practical issues are discussed in Section 2.5. 

In formula (1) and in the description below, we focus on imputing one target variable at a time. In 

practice, one often encounters records with several missing values. In that case, the standard approach 

is to impute all missing values in a record from the same donor. This helps to preserve the multivariate 

relations between the imputed variables. In fact, an important practical advantage of donor imputation 

compared to model-based imputation is that it can be extended to multivariate imputation in this 

natural way. 

                                                      
1
 This section is to a large extent based on Chapter 6 of Israëls et al. (2011). 
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2.2 Random and sequential hot deck imputation 

In random hot deck imputation, imputation classes are formed based on categorical auxiliary variables. 

For each recipient unit i  in a given imputation class, the group of potential donors consists of the units 

within the same class with y  observed. Of these potential donors, one is selected at random – 

typically through equal-probability sampling – and used to impute the recipient. Note that this 

procedure implies that the donor and the recipient have exactly the same values on all auxiliary 

variables that are used to define the imputation classes. Conditional on these auxiliary variables, the 

donor is selected completely at random. 

Sequential hot deck imputation also requires that the donor and the recipient have identical values on 

the auxiliary variables, but here the data set is not explicitly split into groups. Instead, one goes over 

the records in the data set in order and imputes each missing value by the last previously encountered 

observed value for a unit with the same scores on the auxiliary variables. Thus, the recipient is 

imputed using as a donor the last unit with y  observed that belongs to the same imputation class and 

that comes before the recipient in the data file. Historically, the sequential hot deck method had the 

advantage that it can be carried out by a computer in a very efficient manner. The algorithm requires 

just one pass over the data set (Kalton and Kasprzyk, 1986). With the rise of computing power, this is 

no longer considered a real advantage for most practical applications. 

For the sequential hot deck method, the imputations obviously depend on the order of the records in 

the data set. The method can be applied after a random sorting of the records; this yields stochastic 

imputations and is sometimes called ‘random sequential hot deck’. Alternatively, deterministic 

imputations may be obtained by sorting the records on one or more background characteristics. Either 

way, it is recommended to perform some form of explicit sorting before applying this method, because 

otherwise the results may be biased due to an implicit and unforeseen ordering of the units in the file. 

Typically, the standard errors of means and totals of y  will be inflated by random (sequential) hot 

deck imputation (Little and Rubin, 2002). In part, this may be due to the risk of outliers being 

‘magnified’, which can be avoided by excluding outliers from the group of potential donors. More 

generally, it is desirable to avoid that the same unit can be used as a donor for many different 

recipients. In random hot deck imputation, this can be achieved by using a more elaborate selection 

mechanism, so that a repeated use of the same donor is only allowed once all or most of the potential 

donors within an imputation class have had a turn. In sequential hot deck imputation, a repeated use of 

the same donor may occur whenever there are several item non-respondents close together in the data 

file. One way to prevent this is to consider an extension of sequential hot deck imputation. Under this 

extension, one stores the last K  observed values within an imputation class (for some 1>K ). 

Whenever an item non-respondent is encountered, it is imputed by choosing at random one of the K  

potential donor values. 

2.3 Nearest-neighbour imputation 

In nearest-neighbour imputation, we drop the restriction that the donor and the recipient have identical 

scores on all auxiliary variables. Instead, the auxiliary variables are used to define a distance function 

),( kiD  between units i  and k , where i  is the recipient and k  is a potential donor. The nearest 

neighbour of unit i  is defined as the respondent d  that minimises this distance function. Formally, 
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 ),(minarg kiDd
obsk∈

= ,              (2) 

where obs  denotes the set of units with y  observed, i.e., the set of potential donors. 

Before going into the imputation method itself, we will briefly discuss possible choices of the distance 

function in formula (2). Assuming for now that the auxiliary variables ( qxx ,,1 K ) are all quantitative 

(but see Section 2.5), a frequently used family of distance functions is given by: 
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with 0>z . For 2=z , formula (3) yields the well-known Euclidean distance. For 1=z , it is just the 

sum of the absolute differences || jkji xx − ; this is sometimes called the ‘city-block’ or ‘Manhattan’ 

distance. As z  becomes larger, formula (3) places a higher penalty on large differences for individual 

auxiliary variables. In fact, by letting z  tend to infinity in (3), we obtain the so-called ‘minimax’ 

distance given by 

 jkji
qj
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=

∞
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max),(
K

.             (4) 

According to distance (4), the nearest neighbour should not deviate strongly from the recipient on any 

auxiliary variable jx . Practical applications of nearest-neighbour imputation that involve distance 

function (3) with choices other than 1=z , 2=z , or ∞→z  are rare. 

A generalisation of (3) is obtained by including weight factors jγ  that express the importance of each 

auxiliary variable for the purpose of finding accurate imputations: 
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In addition, note that the contributions of the auxiliary variables to (3) or (5) are implicitly weighted if 

these variables are measured on different scales. For instance, if 1x  represents last year’s turnover in 

Euros and 2x  represents the number of employees, then the value of ||||),( 22111 kiki xxxxkiD −+−=  

will depend almost exclusively on the first term in practice. To prevent this, one should first 

standardise the auxiliary variables so that their variances are equal to 1. Alternatively, the so-called 

Mahalanobis distance could be used which also takes correlations between variables into account (see, 

e.g., Little and Rubin, 2002); this can be seen as a generalisation of the Euclidean distance ),(2 kiD . 

In its basic form, the nearest-neighbour method imputes an item non-respondent by using its nearest 

neighbour as donor. This yields a deterministic imputation. As before, the underlying idea is that two 

units that are closely matched on relevant background characteristics [i.e., for which ),( kiD  has a 

small value] are likely to also have a similar score on the target variable. 

A stochastic generalisation of nearest-neighbour imputation first selects the K  units that are closest to 

unit i  in terms of ),( kiD  – i.e., the K  nearest neighbours – as potential donors and then draws one of 

these units at random. In some applications, unequal drawing probabilities are assigned to the K  

nearest neighbours so that within this group the units with smaller values of ),( kiD  are more likely to 
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be selected as donor. Following Bankier et al. (2000), an appropriate choice of drawing probability for 

the th
k  potential donor is then given by: 
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where ),(minmin kiDD
obsk∈

=  denotes the distance of the nearest neighbour and 0≥t  is a parameter 

determining the selection mechanism. Equal-probability selection is obtained as a special case of (6) 

with 0=t . The method coincides with ordinary deterministic nearest-neighbour imputation in the 

limit ∞→t . 

2.4 Predictive mean matching 

Little (1988) described a variant of donor imputation known as predictive mean matching. In this 

imputation method, a linear regression is first performed of the target variable y  on some auxiliary 

variables qxx ,,1 K . The regression model is fitted on the data of units without item non-response. 

Next, the resulting regression equation is used to obtain predicted values ŷ  for all records, in 

accordance with formula (4) in the module “Imputation – Model-Based Imputation”. For item non-

respondent i  with predicted value iŷ , we select as donor the item respondent d  for which the 

predicted value dŷ  is as close as possible to iŷ . Finally, the observed value dy  of the donor is 

imputed, in accordance with formula (1) above. The latter feature makes this method a form of donor 

imputation rather than model-based imputation. 

It should be noted that predictive mean matching is actually a special case of nearest-neighbour 

imputation. This is easily seen by considering the distance function 

 kipmm yykiD ˆˆ),( −=  

and choosing the donor according to formula (2). Alternatively, this distance function can be 

expressed as a weighted sum of differences between the auxiliary variables used in the regression (De 

Waal et al., 2011, p. 253). 

2.5 Practical issues 

Random and sequential hot deck imputation require that the auxiliary variables are categorical, 

because these variables are used to construct imputation classes. Quantitative auxiliary variables can 

be included by first deriving ‘categorised’ versions of them (e.g., a size class variable based on the 

number of employees). 

Nearest-neighbour imputation is used mainly with quantitative auxiliary variables. It is also possible to 

include categorical auxiliary variables, but this requires an appropriate extension of the distance 

function. One way to do this is to assign, for each categorical variable separately, a distance to each 

possible pair of values. For an auxiliary variable jx  with m  categories, this ‘local’ distance function 

can be summarised in the form of an mm ×  matrix jA . Next, we can define a ‘global’ distance 

function of the form (3) or (5), by replacing the absolute difference || jkji xx −  by the value 
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),( jkjij xxA  in these expressions. Similarly, a combination of quantitative and qualitative auxiliary 

variables can also be handled in nearest-neighbour imputation. 

An alternative way to handle a combination of quantitative and qualitative auxiliary variables is to 

combine the random and nearest-neighbour hot deck methods. That is, we first use the categorical 

variables to construct imputation classes. Next, within each imputation class, we apply the nearest-

neighbour method using a distance function of quantitative variables. In this case, the donor has to 

match the recipient exactly on the categorical variables but their scores on the quantitative variables 

may be different. The approach in the previous paragraph offers more flexibility. 

It is possible to take sampling weights into account in the selection of the donor; see Kalton (1983) 

and Andridge and Little (2009). As discussed in “Imputation – Main Module”, there is no consensus 

of opinion on the necessity in general of incorporating sampling weights into imputation procedures. 

However, it is often useful to ensure that recipients are imputed from donors with similarly-sized 

weights. Effectively, donor imputation increases the weight of a donor by adding the weights of its 

recipients (Kalton, 1983). Therefore, if a donor with a small weight is used to impute a recipient with a 

much larger weight, the influence of that donor on the survey estimates increases disproportionally; as 

a result, the variances of these estimates will be inflated. To prevent this, the weighting variable – or 

the design variables that constitute the weighting model – may be included as auxiliary variables in the 

donor selection. Andridge and Little (2009) compared the performance of hot deck imputation with 

and without the inclusion of sampling weights in a simulation study. 

3. Design issues 

 

4. Available software tools 

Several R packages are available that can perform hot deck donor imputation, including StatMatch 

and mice. The Banff system by Statistics Canada performs nearest-neighbour imputation for 

quantitative data. CANCEIS, another tool by Statistics Canada, offers more advanced nearest-

neighbour imputation functionality for quantitative and qualitative data. It should be noted that 

CANCEIS is mainly aimed at social statistics, in particular the population census. 

5. Decision tree of methods 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 
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Interconnections with other modules 

8. Related themes described in other modules 

1. Imputation – Main Module 

2. Imputation – Model-Based Imputation 

9. Methods explicitly referred to in this module 

1.  

10. Mathematical techniques explicitly referred to in this module 

1.  

11. GSBPM phases explicitly referred to in this module 

1. GSBPM Sub-process 5.4: Impute 

12. Tools explicitly referred to in this module 

1. Banff 

2. CANCEIS 

3. R 

13. Process steps explicitly referred to in this module 

1. Imputation, i.e., determining and filling in new values for occurrences of missing or discarded 

values in a data file 
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Administrative section 

14. Module code 

Imputation-T-Donor Imputation 
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