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General section 

1. Summary 

The problem of reconciling possibly conflicting information as described in the module “Micro-Fusion 

– Reconciling Conflicting Microdata” can be treated by an optimisation approach. In this approach, 

the values in the record with inconsistent microdata are changed, as little as possible, such that the 

modified record with microdata is consistent in the sense that it satisfies all edit rules. Formally then, 

the minimum adjustment method can be described as minimising a chosen distance between the 

original (inconsistent) record and the adjusted record, subject to the constraint that all edit rules are 

satisfied by the adjusted record. By specifying different distance functions, the minimum adjustment 

approach leads to different methods. For three common and, for the adjustment problem plausible, 

distance functions the corresponding adjustment methods will be described in this module and their 

differences will be illustrated by a numerical example. 

2. General description of the method 

2.1 Formal description of the optimisation problem 

The optimisation approach resolves inconsistencies in data records with numerical variables that are 

required to adhere to a set of specified linear edit rules. The numerical variables in a record are 

denoted by ix  with ),...,1( ni =  and can be represented as a vector of variables: ),,,( 21 nxxx K=x . 

The general form of a linear edit rule is as follows (see the module “Statistical Data Editing – 

Automatic Editing”): 

 011 =−++ jnjnj cxexe L ,             (1) 

for equalities and  

 011 ≥−++ jnjnj cxexe L              (2) 

for inequalities. Where ),...,1( Jj =  numbers the edit rules, jie  are numerical coefficients and jc  are 

numerical constants.  

To describe the minimum adjustment methods it is convenient to express the edit rules in matrix 

notation. The equalities (1) can be expressed as cEx = , with E the nJ ×  “edit matrix” with elements 

jie  and c the J-vector with elements cj. 

For the example record in table 1 of the module “Micro-Fusion – Reconciling Conflicting Microdata” 

we have  

x = (1.Profit, 2.Employees, 3.Turnover main, 4.Turnover other, 5.Turnover, 6.Wages, 7.Other costs,  

       8.Total costs).  

The three equality edits:  
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e1: x1 – x5 + x8 = 0 (Profit = Turnover – Total Costs) 

e2: –x3 + x5 – x4 = 0 (Turnover = Turnover main + Turnover other) 

e3: –x6 – x7 + x8 = 0 (Total Costs = Wages + Other costs) 

can be expressed in the form Ex = c with 
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Notice that the second column of E contains all zeroes because the second variable is not involved in 

any of the edit rules.  

In this example a composite record was considered where three variables, Turnover, Employees and 

Total costs were obtained from reliable administrative sources and the other variables from a survey. 

As a consequence of obtaining the data from different sources, the edit rules are violated. The 

adjustment problem was to adjust the survey values such that the edit rules are satisfied while leaving 

the administrative values unchanged. For the optimisation approach it is necessary to take the 

distinction between free variables that are allowed to be adjusted and fixed variables that are not, into 

account. The complete data vector can be partitioned into frex  for the free variables and fixx  for the 

fixed ones. A corresponding partitioning of the edit matrix yields, say, freE  and fixE . Now we can 

write 

say.  , 

as expressed be can hich

, so and

,

bAx

xEcxE

cxExEEx
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=+=

fre

fixfixfrefre
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w
 

The r.h.s. of this last expression contains all constants including the values of fixed variables and the 

l.h.s. contains the free variables that may be changed. They are the actual variables for the 

optimisation problem. For ease of notation we will, in the context of the optimisation problem, simply 

write x for the relevant, not fixed, variables and suppress the suffix fre. Thus we will write bAx =  for 

the constraints on the relevant variables. 

In addition to the equality constraints we also often have linear inequality constraints. The simplest 

case is the non-negativity of most economic variables. The optimisation approach can also handle 

linear inequality constraints. The constraints can then be formulated as eqeq bxA =  and ineqineq bxA ≥ , 

where eqA  contains the rows of A corresponding to the equality constraints and ineqA  the ones 

corresponding to the inequality constraints. For ease of exposition we shall, without noting otherwise, 

write these equality/inequality constraints more compactly as bAx ≥  

With the notation and conventions introduced above we can write the optimisation approach to the 

problem of finding the smallest possible adjustments compactly as 

bxA

xxx x

≥

=
~   ..

),(minarg~
0

ts

D
,              (3) 
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with 0x  the adjustable part of the record before adjustment and x~  the corresponding sub-record after 

the adjustment and ),( 0xxD  a function measuring the distance or deviance between x  and 0x . In the 

next section we will consider different functions D for the adjustment problem.  

The conditions for a solution of the minimisation problem formulated in (3) can be found by 

inspection of the Lagrangian for this problem, which can be written as  

)(),(),( 0 bAxαxxαx −+= T
DL ,             (4) 

with α  a vector of Lagrange multipliers, one for each of the constraints j. 

From optimisation theory it is well known that for a convex function D(x, x0) and linear (in)equality 

constraints, the solution vector x~  must satisfy the so-called Karush-Kuhn-Tucker (KKT) conditions 

(see, e.g., Luenberger, 1984). One of these conditions is that the gradient of the Lagrangian w.r.t. x is 

zero when evaluated at the optimal point, i.e., 

0),~(),~( 0 =+′=′ ∑ j jijixix axDxL
ii

αxα ,            (5) 

with 
ixL′  the gradient of L w.r.t. xi and 

ixD′  the gradient of D w.r.t. xi. From this condition alone, we 

can already see how different choices for D lead to different solutions to the adjustment problem. 

Below we shall consider three familiar choices for D, Least Squares, Weighted Least Squares and 

Kullback-Leibler divergence, and show how these different choices result in different structures of the 

adjustments, which we will refer to as the adjustment models. The form of these adjustment models 

gives some guidance to the choice of metric and the following properties may also be helpful in this 

respect. Weights in the WLS-criterion can be used to adjust some variables more than others, for 

instance because they are considered less reliable. Weights can also be used to make the amount of 

adjustment dependent on the size of the original value. Without knowledge about the preferred relative 

size of the adjustments for the different variables, the ordinary LS special case arises. The KL-criterion 

is only defined for positive variables: the original values need to be positive and the adjusted values 

are also guaranteed to be positive. The KL-adjustments can be expressed as positive multiplicative 

factors, larger original values will be adjusted more than smaller ones. More details of these 

adjustment models and their interpretation is given below. 

2.2 Least squares adjustments 

First, we consider the least squares criterion to find an adjusted x-vector that is closest to the original 

unadjusted data, that is: )()(),( 002
1

0 xxxxxx −−= T
D , and so iiix xxxD

i ,00
~),~( −=′ x , and we obtain 

from (5) 

jj jiii axx α∑+= ,0
~ .              (6) 

This shows that the least squares criterion results in an additive structure for the adjustments: the total 

adjustment to variable ix ,0  decomposes as a sum of adjustments to each of the constraints j. Each of 

these adjustments consists of an adjustment parameter jα  that describes the amount of adjustment due 
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to constraint j and the entry jia  of the constraint matrix A pertaining to variable i and constraint j 

Values of 1, –1 or 0 for jia  imply that ix ,0  is adjusted by jα , jα−  or not at all.  

For variables that are part of the same constraints and have the same value jia , the adjustments are 

equal and the differences between adjusted variables are the same as in the unadjusted data. In 

particular, this is the case for variables that add up to a fixed total, given by a register value, and are 

not part of other constraints. 

2.3 Weighted least squares adjustments 

For the weighted least squares criterion, ),( 0xxD = ))(()( 002
1 xxwxx −− Diag

T , with )(wDiag  a 

diagonal matrix with a vector with weights along the diagonal. The derivative of this loss function in 

the optimum is )~( ,0 iii xxw −  and we obtain from (5) 

jj ji

i

ii a
w

xx α∑+=
1~

,0 .             (7) 

Contrary to the least squares case where the amount of adjustment to a constraint is equal in absolute 

value (if it is not zero) for all variables in that constraint, the amount of adjustment now varies 

between variables according to the weights: variables with large weights are adjusted less than 

variables with small weights.  

For variables that are part of the same constraints and have the same value jia , the adjustments are 

equal up to a factor 1/wi and the differences of the weighted adjusted variables are the same as in the 

unadjusted data, that is, for variables i and i′  we have iiiiiiii xwxwxwxw ′′′′ −=− ,0,0
~~ . 

The weighted least squares approach to the adjustment problem has been applied by Thomson et al. 

(2005) in the context of adjusting records with inconsistencies caused by imputation. Some of the 

variables were missing and the missings were filled in by imputed values without taking care of edit 

constraints. This caused inconsistencies that were resolved by minimal adjustments, in principle to all 

variables, observed or imputed, according to the WLS-criterion. They used weights of 10,000 for 

observed values and weights of 1 for imputed values. Effectively, this means that if a consistent 

solution can be obtained by changing only imputed variables, this solution will be found. Otherwise 

(some of the) observed variables will also be adjusted.  

One specific form of weights that is worth mentioning is obtained by setting the weight wi equal to 

1/x0,i resulting, after dividing by x0,i in the adjustment model 

jj ji

i

i a
x

x
α∑+= 1

~

,0

,              (8) 

which is an additive model for the ratio between the adjusted and original values. It may be noticed 

that the expression on the right-hand side of (8) is the first-order Taylor expansion (i.e., around 0 for 

all the jα ’s) to a multiplicative adjustment given by 

)1(
~

,

jjij

io

i a
x

x
α+∏=               (9) 
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From (8) we see that the jα ’s determine the difference from 1 of the ratio between the adjusted and 

original values, which is usually much smaller than unity in absolute value (e.g., an effect of 0.2 

implies a 20% increase due to adjustment which is large in practice). The products of the jα ’s are 

therefore often much smaller than the jα ’s themselves, in which cases (9) becomes a good 

approximation to (8), i.e., the corresponding WLS adjustment is roughly given as the product of the 

constraint-specific multiplicative adjustments. 

2.4 Kullback-Leibler adjustments 

The Kullback-Leibler divergence measures the difference between x  and x0 by the function 

)1ln(ln ,0 −−=∑ iii iKL xxxD . The derivative of this loss function is ii xx ,0ln~ln −  and we obtain from 

(5) 

( )jjijii axx α−∏×= exp~ .           (10) 

In this case the adjustments have a multiplicative form and the adjustment for each variable is the 

product of adjustments to each of the constraints. The adjustment factor )exp( jjij a αγ −=  in this 

product represents the adjustment to constraint j and equals 1 if jia  is 0 (no adjustment), jγ/1  if jia  is 

1 and kγ , if jia  is -1. 

For variables that are part of the same constraints and have the same value jia , the adjustments factors 

are equal and the ratios between adjusted variables are the same as between the unadjusted variables, 

jiji xxxx ,0,0 /~/~ = .  

2.5 Generalisations: Adjusting to multiple sources and soft constraints 

In this section we consider the possibilities for further modelling of the adjustment problem by using, 

simultaneously, information from multiple sources. First, we consider the situation that both register 

and survey values are considered to provide information for the final adjusted record rather than 

discarding survey values for which register values are available. Then we show that the approach used 

to combine information from multiple sources can be viewed as using, in addition to the “hard” 

constraints that are to be satisfied exactly, also “soft” constraints that only need to be fulfilled 

approximately. 

2.5.1 Adjusting to both survey and register values 

So far we considered the case where one of the sources (the administrative one) provides the reference 

values that are considered to be the correct ones and these values replace the values of the 

corresponding survey variables. Another situation arises when both data sources are considered to be 

fallible. In this situation we do not want to discard the data from one of the sources but we consider 

both sources to provide useful information on the variables of interest. This means that in the final 

consistent estimated vector we should not simply copy the values from the register values but obtain 

adjusted values that depend on both the survey values and the available register values. The data from 

the survey will be denoted by x0,S and the data from the register by x0,R. In particular, for the example 

in table 1 of the module “Micro-Fusion – Reconciling Conflicting Microdata” we have the following: 
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S,0x =(Profit, Employees, Turnover main, Turnover other, Turnover, Wages, Other costs, Total costs), 

R,0x =(Employees_reg, Turnover_reg, Total costs_reg). 

where the suffix _reg is used to distinguish the register variables from their survey counterparts.  

A consistent minimal adjustment procedure based on the information from both the survey values, the 

register values and the edit rules can be set up by considering the following constrained optimisation 

problem 

0Ax

xxxxx x

≥

+=

 s.t.

)},(),({minarg~
,0,0 RRS DD

           (11) 

where the vector Rx  denotes the subvector of x  that contains the variables that are observed in the 

register. The vectors x  and x0,S both contain all variables and can be partitioned as TT
R

T

R
),( xxx =  and 

TT
SR

T

RSS ),( ,0,0,0 xxx = , with R  denoting the set of variables not in the register. Using this partitioning 

and the property that the distance functions considered in this paper are all decomposable in the sense 

that they can be written as a sum over variables, (11) can be re-expressed as  

0Ax

xxxxxxx x

≥

++=

 s.t.

)},(),(),({minarg~
,0,0,0 RRSRRRSR

DDD
     (12) 

This clearly shows that the values of the variables R that are in both the register and the survey are 

adjusted to satisfy the edit constraints and remain as close as possible to both the register value and the 

survey value. Note that variables that are in both the register and the survey will be adjusted, if the two 

values are not equal, even if they do not appear in any edit rules, which is different from the situation 

considered before. 

2.5.2 Soft constraints 

The adjustment towards the register values due to a separate component in the objective function can 

also be interpreted as adding “soft” constraints to the optimisation problem. These soft constraints 

express that Rx~  should be approximately equal to the register values R,0x  but need not “fit” these data 

exactly as was required before.  

The notion of soft constraints opens up a number of possibilities for further modelling the adjustment 

problem. Suppose, for instance, that the total amount of wages paid (Wages) is known from an 

administrative source and treated as fixed while the number of employees (Employees) is a free 

variable. Furthermore, assume that before adjustment the wages are 20,000 Euros per employee and 

that it is plausible that this ratio should hold approximately for the record after adjustment. This can be 

formulated as a “soft” ratio constraint on Employment and Wages: Wages / Employment ≈ 20,000. This 

soft constraint can be handled by the optimisation problem by adding to the loss function the 

component ( )employmentwages xxD ×20000 , . This soft constraint is often more reasonable than using hard 

upper and lower bounds on the adjusted value for Employment. In fact we can do both, for instance to 

bound Employment within certain hard limits and use the soft constraint to draw the value of Wages 

within these bound towards the expected value of 20,000 times the number of employees. 
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3. Preparatory phase 

 

4. Examples – not tool specific 

4.1 Comparison of distance functions using the example record 

The different methods (LS, WLS and KL) have been applied to make the two composite records 

consistent that are in the example of table 1 in the module “Micro-Fusion – Reconciling Conflicting 

Microdata”. For the WLS method we used as weights the inverse of the x0-values so that the relative 

differences between x and x0 are minimised and the adjustments are proportional to the size of the x0-

values.  

The optimisation methods were implemented by an iterative method which is a special case of the so-

called row-action algorithms treated in Censor and Zenios (1997) (see also, De Waal et al., 2011, Ch. 

10). For the (weighted) least squares adjustments an R-package is available (van der Loo, 2012). 

The results for the different methods are in table 1 below. The solutions for the KL- and WLS-

adjustments appeared to be the same in all digits shown and were therefore combined into a single 

column. With the weights used here these solutions should be similar in practice. The register values 

that are treated as fixed are shown in bold; the other values may be changed by the adjustment 

procedure.  

Table 1. Example business record: two composite versions and adjusted values. 

Variable Name Composite record II  Composite record I 

Unadj. LS  WLS/KL  Unadj. LS  WLS/KL  

x1 Profit 330 282 291 330 260 249 

x2 Employees 20 20 20 25 25 25 

x3 Turnover main 1000 960 922 1000 960 922 

x4 Turnover other  30 -10 28 30 -10 28 

x5 Turnover 950 950 950 950 950 950 

x6 Wages 500 484 470 550 550 550 

x7 Other costs 200 184 188 200 140 151 

x8 Total costs 700 668 658 700 690 701 

Unadj. = Unadjusted values. 
LS = adjusted values according to the LS criterion. 

WLS/KL = adjusted values according to the WLS or KL criterion. 
 

For both composite records, the LS adjustment procedure leads to one negative value for Turnover 

other, which is not allowed for this variable. Therefore the LS-procedure was run again with a non-

negativity constraint added for the variable Turnover other. This results simply in a zero for that 

variable and a change in Turnover main to ensure that Turnover = Turnover main + Turnover other. 

Without the non-negativity constraint, the LS-results clearly show that for variables that are part of the 

same constraints (in this case the pairs of variables x3, x4 and x6, x7 that are both appearing in one 

constraint only), the adjustments are equal: –40 for x3, x4 and –16 for x6, x7. Total costs (x8) is part of 

two constraints and therefore the total adjustment to this variable consists of two additive components. 

One component to adjust to the constraint e1: x1 – x5 + x8 = 0 (Profit = Turnover – Total Costs) and 

one component to adjust to e3: x8 – x6 – x7 = 0 (Total Costs = Wages + Other costs). For the composite 
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record II, the first component is minus 48 – which is also the single adjustment component for Profit – 

and the second component is 16 – which is also the single adjustment component for Wages and Other 

costs (with opposite sign). These two components add up to the adjustment of –32. 

The results for the WLS/KL solution show that for this weighting scheme the adjustments are larger, 

in absolute value, for large values of the survey variables than for smaller ones. In particular, the 

adjustment to Turnover other is only –2.3 – so that no negative adjusted value results in this case – 

whereas the adjustment to Turnover main is 77.7. The multiplicative nature of these adjustments (as 

KL-type adjustments) also clearly shows since the adjustment factor for both these variables is 0.92 

(for both composite records). The adjustment factor for Wages and Other costs in composite record I 

is also equal (to 0.94) because these variables are in the same single constraint and so the ratio 

between these variables is unaffected by this adjustment. However the ratio of each of these variables 

to Total Costs is not unaffected because Total Costs has a different sign in the constraint e3 and, 

moreover, Total Costs is also part of constraint e1 so that it is subject to two adjustment factors. 

5. Examples – tool specific 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 
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Specific section 

8. Purpose of the method 

The purpose of the method is to adjust the values of some variables in a data record to remove edit 

violations to ensure consistency of the data values obtained from different sources.  

9. Recommended use of the method 

1. The method should be used after detection and treatment of errors and missing values.  

10. Possible disadvantages of the method 

1. When inconsistencies arise due to large errors in some values, these errors may propagate to 

other values due to adjustment. Influential errors should therefore be treated before the method 

is applied. 

11. Variants of the method 

1. Least squares adjustments 

2. Weighted least squares adjustments. 

3. Kullback-Leibler adjustments. 

12. Input data 

1. Data records with possibly inconsistent values and edit rules. 

13. Logical preconditions 

1. Missing values 

1. Missing values are allowed but edit rules involving variables with missing values cannot 

be checked and no adjustment with respect to these edit rules will take place. 

2. Erroneous values 

1. Influential erroneous values should be treated before the method is applied. 

3. Other quality related preconditions 

1.  

4. Other types of preconditions 

1.  

14. Tuning parameters 

1. The amount of change applied to individual variables can be controlled by specifying weights 

for the variables 

15. Recommended use of the individual variants of the method 

1.  
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16. Output data 

1. The output consists of the same individual records as the input, with values adapted when 

needed to ensure consistency with the edit rules. 

17. Properties of the output data  

1. The output data are ensured to be consistent with all specified edit rules that do not involve 

variables with missing values. 

18. Unit of input data suitable for the method 

The input consists of individual records that are treated one-by-one, independently. 

19. User interaction - not tool specific 

1.  

20. Logging indicators 

1.  

21. Quality indicators of the output data 

1.  

22. Actual use of the method 

1.  

Interconnections with other modules 

23. Themes that refer explicitly to this module 

1. Micro-Fusion – Data Fusion at Micro Level 

2. Statistical Data Editing – Main Module 

3. Statistical Data Editing – Automatic Editing 

4. Statistical Data Editing – Editing Administrative Data 

5. Imputation – Main Module 

24. Related methods described in other modules 

1. Micro-Fusion – Reconciling Conflicting Microdata 

2. Micro-Fusion – Prorating 

3. Micro-Fusion – Generalised Ratio Adjustments 

25. Mathematical techniques used by the method described in this module 

1. Optimisation of convex functions with linear (in)equality constraints. 
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26. GSBPM phases where the method described in this module is used 

1. Phase 5 - Process 

27. Tools that implement the method described in this module 

1. The R-package rspa of van der Loo (2012) can be used to apply adjustment according to the 

(weighted) least squares criterion. 

28. Process step performed by the method 

GSBPM Sub-process 5.3: Review, validate and edit 
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Administrative section 
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