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General section 

1. Summary 

The objective in model-based imputation is to find a predictive model for each target variable in the 

data set that contains missing values. The model is fitted on the observed data and subsequently used 

to generate imputations for the missing values. Several commonly-used imputation methods are 

special cases of model-based imputation; this includes mean imputation, ratio imputation, and 

regression imputation. 

2. General description
1
 

2.1 Introduction to model-based imputation 

The objective in model-based imputation is to find a predictive model for each target variable in the 

data set that contains missing values. The model is fitted on the observed data and subsequently used 

to generate imputations for the missing values. Many practical applications use a separate model for 

each variable in the data set. Some multivariate extensions will be briefly discussed in Section 2.6. 

Before that, we will discuss mean imputation (Section 2.2), ratio imputation (Section 2.3), and 

regression imputation (Section 2.4). Section 2.5 treats certain practical issues related to the application 

of these methods. 

2.2 Mean imputation 

In mean imputation, each missing value is replaced by the observed mean of all item respondents. That 

is, if iy  denotes the score of the th
i  unit on the target variable, then each missing value is imputed by 
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with obs  denoting the set of obsn  item respondents for variable y . 

Obviously, mean imputation leads to a peak in the distribution of y , because the same value is 

imputed for all item non-respondents. On the micro level, the quality of the imputations produced by 

this method is generally low. The method is potentially suitable if the intended output is limited to 

estimates of population means and totals. In general, mean imputation is not suitable for estimating 

dispersion measures such as the standard deviation, frequency distributions, or correlations between 

target variables, because these can all be distorted by imputing observed means. The main advantage 

of this method is its simplicity. 

It is possible to apply mean imputation within imputation classes, i.e., groups that are more or less 

homogeneous with respect to the target variable. In this case, formula (1) is replaced by 
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 This section is to a large extent based on Chapters 3, 4, and 5 of Israëls et al. (2011). 
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where hiy  is the score of the th
i  unit in imputation class h  and obshn ;  is the number of item 

respondents for variable y  in h . This extension is sometimes referred to as ‘group mean imputation’. 

In the context of business surveys, domain estimates by economic activity and size class are often part 

of the intended output. In that case, it is natural to define imputation classes based on these classifying 

variables, which are in fact known to correlate strongly with many economic target variables. 

Compared to using overall mean imputation, the use of group mean imputation should significantly 

improve the quality of the domain estimates and, usually, also the population estimates. 

In general, group mean imputation produces a set of smaller peaks in the distribution of y  (one for 

each imputation class). If the imputation classes are very effective in discriminating among the units, 

so that the variation of y  between classes is much larger than the variation within classes, then this 

method can also be used to reasonably estimate dispersion measures. This is true because only the 

variation of y  within classes is disregarded under this method. 

2.3 Ratio imputation 

For ratio imputation, we assume that there is a single auxiliary variable x  that is always observed (or 

previously imputed) and that is more or less proportional to the target variable y . First, the unknown 

ratio between y  and x , say R , is estimated from the units with both y  and x  observed: 

 ∑∑
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Subsequently, the missing iy  are imputed by applying this ratio to the observed ix : 
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Thus, the imputed values are obtained by assuming that the proportion that was estimated from the 

respondents holds exactly for the item non-respondents. 

As an illustration, suppose that y  denotes turnover and x  denotes number of employees. Then the 

ratio R  represents the average turnover per employee. According to (2), multiplying the observed 

number of employees for the th
i  unit by the estimated average turnover per employee yields an 

estimate of turnover for the th
i  unit, and this estimate is used as an imputation. 

A common application of ratio imputation occurs in repeated surveys, where the value of y  measured 

at an earlier time (say 1−t , with t  denoting the current time) is used as auxiliary information. In this 

case, we can write t
yy =  and 1−= t

yx . The imputation is then given by 

 1ˆ~ −= t

i

t

i yRy , 

with R̂  the estimated development of the target variable between 1−t  and t . We refer to the module 

“Imputation – Imputation for Longitudinal Data” for more details on imputation in this context. 

As with mean imputation, ratio imputation can also be applied within imputation classes. In this case, 

a separate ratio hR  is estimated for each imputation class and used in formula (2). This may be called 
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‘group ratio imputation’. In general, this extension is useful if the relationship between x  and y  

differs strongly, or at least significantly, between the imputation classes. It should be noted that ratios 

of groups are usually more homogeneous than group means. Regarding domain estimates in business 

surveys, the same remarks apply here as for group mean imputation. 

2.4 Regression imputation 

Regression imputation generalises mean and ratio imputation by assuming a regression model for the 

prediction of y  given a set of auxiliary variables qxx ,,1 K . In many cases, a standard linear regression 

model is used: 

 εββα ++++= qq xxy L11 ,             (3) 

with qββα ,,, 1 K  unknown parameters and ε  a disturbance term, where it is assumed that the 

disturbances for all units are drawn independently from the same normal distribution with mean 0 and 

variance 2σ . 

The parameters in model (3) are estimated – usually through ordinary least squares – from the records 

for which both y  and the auxiliary variables are observed. This results in a prediction for y  given the 

auxiliary variables: 

 qq xbxbay +++= L11
ˆ ,              (4) 

with qbba ,,, 1 K  denoting the least squares estimates of qββα ,,, 1 K . Assuming that the auxiliary 

variables are always observed, this predicted value can be computed for both item respondents and 

item non-respondents on y . 

There are now two generic ways to obtain an imputation iy~  from the regression model: without a 

disturbance term or with a disturbance term. In the first case, the predicted value from (4) is 

substituted directly for the missing value: 

 qiqiii xbxbayy +++== L11
ˆ~ .            (5a) 

This results in a deterministic imputation. In the second case, we add a disturbance to the predicted 

value, i.e., we impute: 

 iqiqiiii exbxbaeyy ++++=+= L11
ˆ~ .          (5b) 

The disturbance ie  can be a random draw from the normal distribution with mean 0 and variance 2σ , 

to be in line with the posited regression model (3). (Actually, 2σ  is unknown in practice and is often 

estimated by the residual error of the fitted model.) Alternatively, a donor can be selected from the 

item respondents (either at random or according to some deterministic criterion; see the module 

“Imputation – Donor Imputation”) and the residual of the donor with respect to the model prediction, 

say ddd yye ˆ−= , can be substituted for ie . In both cases, the disturbance is obtained using the 

regression model. Adding a disturbance results in a stochastic imputation, unless one uses a donor that 

is selected in a deterministic way. We refer to “Imputation – Main Module” for a discussion of the 
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differences between imputing with and without a disturbance term and between deterministic and 

stochastic imputation. 

It should be noted that mean imputation can be seen as a special case of regression imputation, namely 

in the absence of auxiliary variables. In this case, model (3) reduces to 

 εα +=y , 

and the least squares estimate a  is just the observed mean obsy , so that formula (5a) is identical to (1). 

Similarly, ratio imputation can be seen as a special case of regression imputation with one auxiliary 

variable and with the constant term fixed to 0. In this case, model (3) reduces to 

 εβ += xy . 

Under the alternative assumption that the variance of the disturbances equals x
2σ  rather than 2σ , the 

weighted least squares estimate for β  is just the observed ratio R̂ , and formula (5a) is identical to (2). 

Note that there also exist stochastic versions of mean and ratio imputation; these are obtained by 

taking formula (5b) instead of (5a) in the above special cases. 

In practice, the standard linear regression model may not always be appropriate. More generally, a 

non-linear regression model could be used, i.e., 

 )( 11 qq xxfy ββ ++= L  

for some non-linear function (.)f . The disturbance term ε  can be added to this model, or it can be 

implicitly contained therein. 

In the case of a binary target variable with scores 0 and 1, a logistic regression model is often used: 

 εββα ++++=
−

qq xx
p

p
L11

1
log , 

where p  denotes the probability that y  takes the score of 1, given the auxiliary variables. As before, 

the data of the item respondents can be used to estimate the model parameters (e.g., using maximum 

likelihood). Next, for each unit with iy  missing, the probability that 1=iy  is estimated according to 
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Having estimated these probabilities, imputed values may be obtained either by directly imputing 

ii py ˆ~ =  (this yields a deterministic imputation) or by randomly drawing 1~ =iy  with probability ip̂  and 

0~ =iy  with probability ip̂1−  (this yields a stochastic imputation). 

Note that if we impute ii py ˆ~ =  in the above case, the individual imputations are not valid scores (i.e., 

they are not equal to 0 or 1). More generally, regression imputation can produce imputations outside 

the domain of values that are theoretically possible for the target variable. For instance, an imputed 

number of employees may be non-integer, an imputed turnover may be negative, etc. Typically, this is 

not a problem for the estimation of population means, totals and many other statistics, but it may be 

problematic in applications where the microdata themselves are part of the output. If valid individual 

imputations are desired, then it may be better to turn to donor imputation (see “Imputation – Donor 
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Imputation”). See also the module “Imputation – Imputation under Edit Constraints” for the more 

general problem of imposing (multivariate) restrictions on the imputed values. 

2.5 Practical issues 

The regression model (3) is defined for a quantitative target variable and quantitative auxiliary 

variables. Categorical auxiliary variables, such as NACE code or size class, can be included in this 

model by defining appropriate dummy variables. In particular, group mean imputation is obtained as a 

special case of regression imputation by including only a dummy variable for each imputation class. 

For categorical target variables, other models should be used, such as (a multinomial extension of) 

logistic regression. 

It is important to assess the quality of imputations. A direct comparison between the imputed values 

and the actual values is usually impossible, since the actual values are unknown. In some cases, it may 

be possible to obtain an impression of the quality of imputation through external validation, by 

comparing the imputed data to data from another source, either for the individual imputed values or at 

an aggregate level. Usually, however, there are conceptual differences between the various sources 

(different variable definitions, different target populations, etc.) so that opportunities for these types of 

validation are limited. 

An indirect measure of the quality of a model-based imputation is provided by various indicators of 

model fit. For linear regression analysis with the least squares estimator, the fraction of explained 

variance 2R  can be used to quantify the strength of the model among the item respondents. In this 

way, different imputation models can be compared with one another; note that gains in 2R  for larger 

models should be set off against increases in degrees of freedom. For more general models, the 

likelihood can be used as an indicator, or a measure derived from the likelihood such as AIC or BIC. 

See Draper and Smith (1998) – or any other introductory book on regression analysis – for a more 

comprehensive discussion of model selection and ways to assess model fit. A limitation of using the 

model fit to assess imputation quality is that, in theory, it is possible for model A to have a better fit 

than model B among the item respondents, while model B provides better predictions than model A 

among the item non-respondents. 

Another possibility to obtain an impression of the quality of different imputation methods in a 

particular context is to perform a simulation experiment with either the actual data set or historical 

data. In such an experiment, observed values are temporarily suppressed and new values are imputed 

for these left-out values. To the extent that the imputed values are similar to or – for categorical 

variables – even equal to the original values, an imputation method appears to be useful for a 

particular application. By defining a suitable distance function between the imputed and observed 

values – or, often more aptly, between target estimates based on these values –, it is possible to 

compare different imputation methods/models and choose the most appropriate one. This can be seen 

as an application of cross-validation. We refer to Schulte Nordholt (1998) and Pannekoek and De 

Waal (2005) for examples of such experiments. A good introduction into the design and use of 

simulation studies is given by Haziza (2006). 
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2.6 Multivariate methods 

In the previous subsections, we have treated model-based imputation methods that impute a data set on 

a variable-by-variable basis. There also exist model-based methods that take a multivariate approach 

to imputation. Although these multivariate methods are more complex to use, they do have some 

theoretical advantages (De Waal et al., 2011, pp. 277-279). If y  is imputed by a single-variable 

method, then typically the relationships between y  and all other variables in the data set will be 

distorted except for those variables that were included as auxiliary variables in the imputation model 

for y . Thus, if the intended output includes correlations between target variables or other statistics of 

a multivariate nature, it is important to take this into account in the choice of the imputation model. 

Multivariate imputation methods provide a natural way to preserve correlations between target 

variables. Another advantage of multivariate methods is that there exist techniques that estimate a 

multivariate model by making use of all the available observed data (see below). As discussed above, 

for single-variable methods, the model has to be fitted using only the units with all predictors and the 

target variable observed. 

2.6.1 Multivariate regression imputation 

Using matrix-vector notation, a straightforward extension of the standard linear regression model (3) 

to the case of multiple target variables is given by: 

 εµxBµy +−+= )(, xxyy ,             (6) 

where, for simplicity, we make the assumption that each target variable in y  is modeled using the 

same vector of auxiliary variables x . In the absence of missing data, the matrix of regression 

coefficients xy ,B  could be estimated from the data using least squares: 

 
1

,,,
ˆ −= xxxyxy SSB , 

with xy ,S  the matrix of observed covariances between the target variables and the auxiliary variables, 

and xx ,S  the observed covariance matrix of the auxiliary variables. In addition, yµ  and xµ  could be 

estimated by their observed means: yµ =y
ˆ  and xµ =x

ˆ . 

In the presence of missing data, the above estimates cannot be computed, but one could base 

analogous estimates only on those units for which all relevant variables are observed. However, this 

approach has two important drawbacks. Firstly, in particular for larger models, the number of fully 

observed units may be very small and the resulting estimates may be unreliable. Secondly, and 

perhaps more importantly, the fully observed units may form a selective subset of all units. As a result, 

using the fitted model to impute the item non-respondents may produce a bias in the statistical output. 

A more satisfactory solution may be provided by maximum likelihood estimation with incomplete 

data. Under certain assumptions on the mechanism that causes the missing values, the so-called 

Expectation-Maximisation (EM) algorithm provides valid estimates of the parameters in model (6). 

This approach uses all the available information in the observed data to estimate these parameters, 

including the units with partially observed records. The interested reader is referred to De Waal et al. 

(2011, Ch. 8) for a brief introduction and Little and Rubin (2002) for more details. 
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Having obtained estimates of the unknown parameters in model (6), imputations for the missing 

values in a record iy  may be obtained as before from the observed vector ix . That is, a deterministic 

imputation is obtained directly from the predicted value, 

 )ˆ(ˆˆˆ~
, xixyyii µxBµyy −+== , 

and a stochastic imputation is obtained by adding a random disturbance to this prediction: 

 ixixyyiii eµxBµeyy +−+=+= )ˆ(ˆˆˆ~
, . 

A common choice is to draw ie  from a multivariate normal distribution with mean vector zero and the 

covariance matrix of the residuals of the regression of y  on x  (cf. De Waal et al., 2011). 

2.6.2 Sequential regression imputation 

In practice, applying multivariate model-based imputation as described in the previous subsection can 

be complicated, particularly if the data set contains a large number of variables of different types 

(continuous, semi-continuous, binary, etc.). It is difficult, if not impossible, to find an explicit joint 

model that is appropriate for such data. Van Buuren et al. (1999) and Raghunathan et al. (2001) 

proposed a different method, known as sequential regression imputation or multivariate imputation by 

chained equations. Under this approach, one models the distribution of each target variable separately, 

conditional on the values of the other variables. This yields a set of single-variable regression models, 

which have to be estimated in an iterative manner. To do this, the following procedure can be used: 

1. Initialise the procedure by imputing each missing value in the original data set by a simple 

method (e.g., mean imputation). 

2. For each variable in turn: 

a. Estimate the parameters of the conditional regression model using all records in the 

current data set for which this variable was originally observed. 

b. Use the estimated conditional model to impute the originally missing values for this 

variable. This updates the current data set for the next iteration. 

3. Repeat Step 2 until ‘convergence’. 

Note that in Step 2a, the conditional regression model is estimated using the most recent imputed 

version of each independent variable. In Step 3, ‘convergence’ may be assessed in terms of stability 

across iterations of the estimated regression parameters or the imputed values. The imputations from 

the final iteration are to be used in subsequent processing. 

As noted above, the main practical advantage of the sequential regression approach lies in the 

flexibility provided by the use of separate, conditional regression models. It should be noted that this 

approach is theoretically justified only if the conditional models imply a proper joint model for the 

data. (The conditional models have to be ‘compatible’.) Otherwise, the iterative estimation procedure 

will not converge to a stable solution. Although this assumption usually cannot be verified beforehand, 

experiences so far suggest that it does not pose a problem in most practical applications (Tempelman, 

2007). 
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Sequential regression is often applied in the context of multiple imputation. (A short discussion of 

multiple imputation is provided in “Imputation – Main Module”.) In fact, it is straightforward to repeat 

the above iterative procedure to generate multiple imputed data sets. Note that stochastic imputation 

should be used to make this procedure meaningful. 

A good practical introduction into the sequential regression approach to imputation is provided by 

Azur et al. (2011). Applications in the context of business survey data are described by Tempelman 

(2007) and Drechsler (2009). 

3. Design issues 

 

4. Available software tools 

Mean and ratio imputation can be implemented using almost any statistical software. Regression 

imputation with common types of models (e.g., linear regression, logistic regression) is provided as a 

standard feature in tools such as SPSS, SAS, and Stata. It is also straightforward to implement in R. 

Specialised packages are available for sequential regression imputation, such as IVEware (in SAS), 

and mice and mi (in R). 

5. Decision tree of methods 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 
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Interconnections with other modules 

8. Related themes described in other modules 

1. Imputation – Main Module 

2. Imputation – Donor Imputation 

3. Imputation – Imputation for Longitudinal Data 

4. Imputation – Imputation under Edit Constraints 

9. Methods explicitly referred to in this module 

1.  

10. Mathematical techniques explicitly referred to in this module 

1. Least squares estimation 

2. Maximum likelihood estimation 

3. EM algorithm 

11. GSBPM phases explicitly referred to in this module 

1. GSBPM Sub-process 5.4: Impute 

12. Tools explicitly referred to in this module 

1. SPSS 

2. SAS 

3. Stata 

4. R 

13. Process steps explicitly referred to in this module 

1. Imputation, i.e., determining and filling in new values for occurrences of missing or discarded 

values in a data file 
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