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General section 

1. Summary 

In the context of business surveys at National Statistical Institutes (NSIs), imputation of missing 

values is often complicated by the fact that the data should conform to a large number of edit rules. In 

this module, we consider two basic approaches to obtain imputations that satisfy edit rules. Under the 

first approach, the edits are incorporated directly in the imputation model, so that all imputations are 

automatically consistent. Unfortunately, this can lead to a very complex model. Therefore, in practice, 

another approach is often used, in which the missing values are first imputed without taking the edits 

into account. In a subsequent step, the initial imputations are then minimally adjusted to become 

consistent with the edits. 

2. General description 

2.1 Introduction 

In the context of business surveys at NSIs, the imputation of missing values is often complicated by 

the fact that the data should conform to a large number of restrictions, known as edit rules, edit 

constraints, or edits (see also “Statistical Data Editing – Main Module”). For instance, if a survey 

includes the variables turnover, costs, and profit, then the edit rule 

 profit = turnover – costs 

is supposed to hold for the corresponding values. In addition, there are edits stating that the values of 

turnover and costs should be non-negative. It is desirable to avoid imputations that are inconsistent 

with the edit rules, because data with obvious inconsistencies are likely to be rejected by most users, 

even if they could in fact be used to make valid statistical inferences (Pannekoek and De Waal, 2005). 

Särndal and Lundström (2005, p. 176) wrote: “Whatever the imputation method used, the completed 

data set should be subjected to the usual checks for internal consistency. All imputed values should 

undergo the editing checks normally carried out for the survey.” 

Obviously, if a standard imputation method such as regression imputation (see “Imputation – Model-

Based Imputation”) or random hot deck imputation (see “Imputation – Donor Imputation”) is applied 

without taking the edit rules into account, then one should generally not expect the resulting 

imputations to satisfy the edits. Unfortunately, taking edit rules into account directly in the imputations 

tends to introduce complications. De Waal et al. (2011) give the following simple example. Suppose 

that we are given a record with missing values on the variables x  and y , and suppose that the 

following edit rules have been defined for these variables: 

 50≥x ;                (1) 

 100≤y ;               (2) 

 xy ≥ .                (3) 

If we first impute x , the only edit which can be evaluated at this stage is (1). Taking this edit into 

account, we might impute the value 150~ =x . The resulting edit rules for y  given by (2) and (3) 

cannot be satisfied simultaneously: 100≤y  and 150≥y . Furthermore, if we start by imputing y , 
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taking edit (2) into account, we might impute the value 40~ =y  and encounter a similar problem with 

the resulting edit rules for x . Thus, consistency with the edit rules is not guaranteed under this 

sequential procedure. The point is that if the variables are imputed sequentially, in general, edit rules 

involving variables that will be imputed later cannot be ignored. 

There are two general approaches to imputation under edit constraints. The first approach is to, 

somehow, include the edit rules in the (implicit or explicit) model used for imputation, so that the 

imputed values automatically satisfy all constraints. The second approach is to apply a two-step 

procedure. In the first step, the missing values are imputed without taking (all) constraints into 

account. In the second step, the initially imputed values are minimally adjusted to satisfy all edits. 

These two approaches will be discussed further in Sections 2.2 and 2.3, respectively. Finally, it should 

be noted that values derived by deductive imputation methods (see “Imputation – Deductive 

Imputation”) trivially satisfy the edits that were used in the derivation. We will return to this point in 

Section 2.3. 

2.2 Imputation under edit constraints by direct modeling 

2.2.1 Ratio hot deck imputation 

In general, imputation methods that take edit constraints into account directly tend to be complex. One 

exception is the ratio hot deck method. This is an extension of the ordinary hot deck donor imputation 

method (see “Imputation – Donor Imputation”) that is appropriate to impute missing values among a 

set of non-negative variables myy ,,1 K  that should satisfy a linear balance edit of the form: 

 totm yyy =++L1 ,              (4) 

where it is assumed that the total value toty  is always observed (or previously imputed). Basically, 

instead of imputing the donor values directly, we use the donor to distribute the total missing amount 

over the missing variables. 

Consider the th
i  record that requires imputation and suppose for notational convenience that the first t  

variables are observed (with values tii yy ,1, ,,K ) and the last tm −  values are missing. We first 

compute the total missing amount, tiitotii yyyr ,1,, −−−= L . Next, using any of the ordinary donor 

imputation methods, we choose a donor from the completely observed records. The donor record 

should be consistent with the edits. We compute the sum of the donor values of the variables to 

impute, say, mdtdd yyr ,1, ++= + L . The ratio hot deck imputations are given by: 
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By construction, the imputed values are non-negative and consistent with edit (4): 
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For an application of the ratio hot deck method in practice, see Pannekoek and Van Veller (2004) or 

Pannekoek and De Waal (2005). A straightforward generalisation of the method can be applied if the 
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balance edit contains coefficients unequal to 1 (De Waal et al., 2011). Unfortunately, the method 

cannot be used to obtain consistent imputations if there are multiple, inter-related restrictions. 

2.2.2 Parametric imputation models 

To introduce the direct modeling of edit constraints in a parametric model, it is useful to consider a 

small univariate example. Suppose that a certain variable y  is to be imputed using the normal 

distribution ),( 2σµN , and suppose in addition that we require the imputations to be non-negative; 

i.e., the edit rule 0≥y  should hold. To make the example interesting, consider the case that µ  and σ  

are such that the distribution ),( 2σµN  has a significant probability of generating negative values 

(e.g., 1=µ  and 2=σ ). The edit would be failed quite often if we imputed values directly from 

),( 2σµN . An intuitively sensible approach to obtain consistent imputations in this case works as 

follows: obtain a random draw z  from ),( 2σµN . If it holds that 0≥z , then impute zy =~ . 

Otherwise, repeat the procedure until a draw with 0≥z  is obtained. By construction, all resulting 

imputations will satisfy the non-negativity edit. Technically, these imputations follow a so-called 

truncated normal distribution (Geweke, 1991).
1
 The above iterative procedure for obtaining values 

from this distribution is known as Acceptance/Rejection sampling (Tempelman, 2007). 

The univariate truncated normal distribution is a relatively simple example of a model that 

incorporates constraints on the modeled variables (in this case: one inequality constraint and one 

variable). The general idea of imputation under edit constraints by direct modeling is to find a model 

that incorporates all the relevant constraints on the variables to impute. The main advantage of this 

approach is that it avoids having to adjust the imputations later on to satisfy the edit rules. Two 

important disadvantages of the direct modeling approach are: (i) in most practical applications, the 

resulting imputation methods are mathematically complex and require heavy computational work; and 

(ii) as this methodology is relatively new, only a limited number of models have been developed. 

Tempelman (2007) developed imputation models that can incorporate particular types of constraints: 

• If all edits are linear inequalities (i.e., the restrictions can be written as bQy ≥  for a given 

matrix Q  and vector b  of constants), then the multivariate truncated normal distribution can 

be used. The distribution is truncated to the region defined by the constraints bQy ≥ . This is 

a multivariate extension of the univariate example given above. 

• If all edits are linear equalities (i.e., the restrictions can be written as aRy =  for a given 

matrix R  and vector a  of constants), then the multivariate singular normal distribution can be 

used. This is a generalisation of the ordinary multivariate normal distribution ),( ΣµdN  for the 

                                                      
1
 In general, a random variable with density function )|( θxf  can be truncated to any subdomain G  of its 

original support by defining the truncated density function: 
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case that the covariance matrix Σ  is singular (Khatri, 1968). In fact, the covariance matrix is 

singular here because the constraints aRy =  induce a linear dependence in this matrix. 

• If both linear equalities and inequalities occur, then the multivariate truncated singular normal 

distribution can be used. This distribution combines the features of the two previous cases. 

• For the special case of one linear equality with non-negativity edits for all variables involved – 

i.e., the case that can be handled by the ratio hot deck method –, an alternative model is given 

by the Dirichlet distribution (Wilks, 1962). 

A full treatment of these models is beyond the scope of this module. We refer to Tempelman (2007) 

and De Waal et al. (2011, Ch. 9) for more details. An important theoretical limitation of the first three 

models is that they are only appropriate for data that are approximately normally distributed. 

Moreover, it is not useful here to apply a standard (non-linear) transformation to the data to obtain a 

closer resemblance to a normal distribution, because the edits for the transformed data would not have 

the linear structure ( bQy ≥  and/or aRy = ) of the original edits. 

2.2.3 The elimination approach 

In the above approaches, a joint model is used to impute all variables with missing values in a record 

at once. A somewhat different, less complex approach was proposed by Coutinho et al. (2007). They 

used a technique called Fourier-Motzkin elimination (Williams, 1986; De Waal et al., 2011) to reduce 

the problem of consistent imputation to a sequence of univariate problems. This elimination technique 

is used more traditionally in algorithms for automatic error localisation. We refer to the module 

“Statistical Data Editing – Automatic Editing” for a brief description of Fourier-Motzkin elimination. 

A full discussion of the elimination approach is beyond the scope of this module. Here, we will only 

give a small example. Consider again the example from Section 2.1, where the objective is to impute 

the variables x  and y  in such a way that the edits (1), (2), and (3) are satisfied. Before we can start 

imputing, we have to posit and estimate a joint model for the data. In contrast to Section 2.2.2, this 

model need not incorporate the edit constraints, which makes the modeling task much easier. 

Following Coutinho et al. (2007), we will use an ordinary bivariate normal distribution in this example 

for simplicity: 

 
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We begin by applying Fourier-Motzkin elimination to the original edits (1)–(3) to eliminate x  from 

these edits. In this particular example, this yields two implied edits for the remaining variable y : 

 50≥y ;                (6) 

 100≤y .               (7) 

We would now like to impute y  from its posited )100,55(N  distribution, in such a way that the 

imputed value satisfies the inequalities (6) and (7). This can be achieved, as in the example from 

Section 2.2.2, by drawing from a truncated normal distribution by means of Acceptance/Rejection 
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sampling. That is, we draw random values from the )100,55(N  distribution until we obtain a value 

that lies between 50 and 100. Suppose that we obtain the value 70~ =y . 

In the next step, we substitute the imputed value 70~ =y  for y  in the original edits (1)–(3). This yields 

two reduced edit rules that involve only x : 

 50≥x ;                (8) 

 x≥70 .                (9) 

Finally, x  is imputed by drawing from the posited )100,60(N  distribution until we obtain a value that 

complies with edits (8) and (9). (In general, we would use the conditional distribution of x , given the 

previously imputed value for y , but the two variables are uncorrelated in this example.) This might 

yield the value 52~ =x . In this manner, we obtain the imputed record )70,52()~,~( =yx  which is 

consistent with the original edits (1)–(3). 

By a fundamental property of the Fourier-Motzkin elimination technique, the above method always 

yields imputations that are consistent with the edit rules (Coutinho et al., 2007). Note that according to 

model (5), the mean of x  is larger than the mean of y . In this sense, the posited model does not 

comply with edit rule (3). Nevertheless, the elimination approach yields consistent imputations, as was 

illustrated by the example. However, it should be noted that if the model strongly disagrees with the 

edit rules, the procedure of Acceptance/Rejection sampling from a truncated distribution may become 

very inefficient. In fact, an appropriate model for the data should not strongly disagree with the edit 

rules, provided that these rules are substantively meaningful. 

For a general description of the elimination approach to consistent imputation, we refer to Coutinho et 

al. (2007) and De Waal et al. (2011, Ch. 9). Extensions of this method have been considered by 

Pannekoek et al. (2008, 2013) and Coutinho et al. (2013). 

2.3 Imputation under edit constraints by adjustment methods 

Since most of the methods discussed in Section 2.2 have limited practical applicability, a less complex 

approach is often applied in practice. Under this approach, the variables with missing values are first 

imputed by any method that produces a complete data set with good statistical properties, without 

taking (all) edit constraints into account. That is to say, any appropriate method discussed in the other 

modules on imputation can be used. Denote the initial imputed record by ŷ . Next, an adjusted 

imputed record y~  is obtained from ŷ  as the solution to a constrained minimisation problem: 

 Minimise )~,ˆ( yyD ,            (10) 

 so that y~  satisfies all edit constraints. 

Here, D  is a function that measures the distance between the initial imputed record ŷ  and the 

adjusted record y~ . It is customary to demand that only the imputed values may be adjusted under this 

minimisation problem, i.e., the variables that were originally observed retain their original values. 

Adjusting the imputed values for consistency with the edit constraints is a special case of the general 

problem of data reconciliation. Methods for this more general problem are treated in “Micro-Fusion – 

Reconciling Conflicting Microdata” and in particular the underlying method module “Micro-Fusion – 
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Minimum Adjustment Methods”. The reader is referred to these modules and to De Waal et al. (2011, 

Ch. 10) for more details. 

In the special case that all edits are linear equalities (written as a linear system of the form aRy = ), 

one could also apply the methodology discussed in the module “Imputation – Deductive Imputation” 

to obtain a consistent record in the second step above. Suppose that the initial imputed record ŷ  is 

partitioned as )ˆ,ˆ(ˆ ′′′= mo yyy  and the imputed values in mŷ  are suppressed (i.e., replaced by missing 

values). The matrix R  is partitioned accordingly as [ ]mo RRR = . If mR  has full rank, it follows 

that the missing values are imputed consistently by )ˆ(~ 1

oomm yRaRy −= − ; see “Imputation – Deductive 

Imputation” for more details. Thus, we should choose mŷ  in such a way that mR  has full rank.
2
 Since 

this choice is not unique in practice, we may randomly vary the selection of mŷ  for each imputed 

record; thereby, we avoid the introduction of a systematic effect in some variables. The resulting 

approach may be seen as a heuristic approximation to minimisation problem (10). However, if 

appropriate software is available, finding the optimal solution to (10) directly should be relatively 

straightforward and there is little to be gained from a heuristic approach. 

3. Design issues 

 

4. Available software tools 

There are no generally available tools that have the imputation methods described in this module as 

standard functionality. Some NSIs have developed dedicated tools for particular applications. On the 

other hand, the methods are relatively easy to implement in statistical computing environments such as 

R and SAS, using the existing functionality available in these environments. Some standard tools do 

exist for solving problem (10) in the adjustment step of Section 2.3; e.g., the R package rspa, as well 

as commercial solvers such as CPLEX and Xpress. 

5. Decision tree of methods 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 
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 It seems undesirable to suppress and impute values that were originally observed. To avoid this, one should 

restrict the system aRy =  to those edits that involve at least one imputed value (the other edits should already 

be satisfied by the observed values). The partitioning can and should then be made in such a way that mŷ  

contains only variables that were initially imputed. 
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Interconnections with other modules 

8. Related themes described in other modules 

1. Statistical Data Editing – Main Module 

2. Imputation – Main Module 

3. Imputation – Model-Based Imputation 

4. Imputation – Donor Imputation 

9. Methods explicitly referred to in this module 

1. Micro-Fusion – Reconciling Conflicting Microdata 

2. Micro-Fusion – Minimum Adjustment Methods 

3. Statistical Data Editing – Automatic Editing 

4. Imputation – Deductive Imputation 

10. Mathematical techniques explicitly referred to in this module 

1.  

11. GSBPM phases explicitly referred to in this module 

1. GSBPM Sub-process 5.4: Impute 

12. Tools explicitly referred to in this module 

1.  

13. Process steps explicitly referred to in this module 

1. Imputation, i.e., determining and filling in new values for occurrences of missing or discarded 

values in a data file 
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