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General section 

1. Summary 

Seasonal adjustment, which consists in the estimation and the removal of the seasonal variation from 

time series has a long tradition, documented in Zellner (1978), Hylleberg (1992) and, more recently, 

Bell, Holan and McElroy (2012). Since both seasonally adjusted series and seasonal component are 

unobserved components and, consequently, a given time series has an unknown composition, many 

methods and procedures have been proposed and implemented to perform the seasonal adjustment. In 

addition to the ARIMA (AutoRegressive Integrated Moving Average)-model based method, 

implemented in TRAMO-SEATS (Maravall, 2012) and to the moving average based method 

implemented in X-12-ARIMA (U.S. Census Bureau, 2012), seasonal adjustment may be performed by 

some more or less conventional methods, such as Structural Time Series (STS) models, Bayesian 

seasonal adjustment, signal-extraction methods, different non-parametric (like spline-based) methods 

etc. Although the two main-stream procedures, TRAMO-SEATS and X-12-ARIMA, are generally 

recognised and accepted as the leading procedures in a process of production of seasonally adjusted 

data in official statistics, it is still important to study the alternatives in order to encourage diversity in 

development of seasonal adjustment. 

An outline of the several seasonal adjustment procedures used at the National Statistical Offices of the 

European Union is given in Fischer (1995). Although this document might look outdated it still 

contains interesting comparisons among several methods used in different national institutes in 

Europe. This document emphasises advantages of TRAMO-SEATS and X-12-ARIMA over the 

comparing methods DAINTIES, BV4, SABL, X-11 UK version and X-11-ARIMA. Note that some of 

the methods described in the document are no longer in use.  

Since the time of publication of the mentioned document several new methods for seasonal adjustment 

have been proposed in the available literature. These methods arise because of the need to deal with 

some issues that ARIMA-model based methodologies have difficulty tackling. Real time signal 

extraction is one such methodology based on the Direct Filter Approach (Wildy, 2008), implemented 

in the R-package signal extraction (R Development Core Team, 2012) created by the same author. The 

author claims that this method has certain advantages over the ARIMA-model based methods with 

respect to the turning-point detection and other relevant timing issues.  

Non-parametric methods such as STL allegedly generate robust estimates of the time series 

components not distorted by aberrant observations (outliers). See Cleveland (1990) and R-package 

STL for more details (R Development Core Team, 2012). Although robust to outliers, the STL-method 

has some disadvantages in official statistics. This procedure does not have full functionality needed to 

produce seasonally adjusted estimates in a way relevant to a government statistical agency. 

Furthermore, the development of this method seems to be stagnated during recent years. 

Bayesian seasonal adjustment, originally proposed by Akaike (1980), has been developed and 

implemented in several software-platforms, such as R-package TIMSAC and SAS procedure 

TSBAYSEA (SAS Institute, 2009). However, such a methodology has not yet attracted attention of 

the national statistical institutes, due to its complexity and the required theoretical background 

necessary to deal with the Bayesian framework. 
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One of the alternative modelling frameworks, the STS-models, is recommended as a substitute to the 

two main methods in the ESS (European Statistical System) guidelines on seasonal adjustment 

(Eurostat, 2009), if certain conditions are satisfied. The use of some other alternative methods falls 

under the category “to be avoided”.  

The ESS guidelines on seasonal adjustment aim to achieve harmonisation of the member state’s 

national practices by promoting the idea of best practices in seasonal adjustment. Although the 

guidelines work towards a unified framework for seasonal adjustment within the ESS, they are not 

supposed to put limitations on the use of other methods. Under appropriate circumstances some less 

conventional models might offer innovative solutions to certain re-occurring problems that the 

national statistical institutes (NSI) have to deal with in their daily work with seasonal adjustment.  

The main focus of this module is put on description of the decomposition based on ARIMA models, 

on moving averages and on STS-models, while the other classes of models are not treated. Section 2 is 

organised as follows. Sections 2.1 and 2.2 describe the two main stages of the seasonal adjustment of a 

given time series through the most widespread procedures, i.e., TRAMO-SEATS and X-12-ARIMA 

(X-13-ARIMA-SEATS): the pre-treatment and the decomposition. In particular, section 2.1 deals with 

the pre-treatment of time series required by both procedures before the decomposition and section 2.2 

gives an overview of the decomposition based on moving averages (or ad hoc filters) and ARIMA 

models. Section 2.3 presents the STS model based approach, highlighting features that make it an 

appealing tool for seasonal adjustment. Finally, referring to TRAMO-SEATS and X-12-ARIMA, 

section 2.4 details the seasonal adjustment process of time series, distinguishing and describing eight 

steps.  

2. General description of the method 

2.1 Pre-treatment 

The most widespread procedures of seasonal adjustment, TRAMO-SEATS and X-12-ARIMA, require 

the pre-treatment of time series aimed at adjusting the original series for special effects before the 

decomposition. Usually these effects refer to calendar effects, outliers, particular events known a-

priori and so forth and the adjustment is carried out through reg-ARIMA models. These are presented 

in this section, while a different approach is considered in section 2.3. 

2.1.1 Reg-ARIMA models 

ARIMA models, as discussed by Box and Jenkins (1976), represent a practical way of dealing with 

moving features of seasonal time series. A general multiplicative seasonal ARIMA model for a time 

series Yt can be written 

 φ (B) Φ (B
s
) (1 − B)

d 
(1 − B

s
)

D
Yt = θ (B) Θ (B

s
) at (1) 

where 

• Yt may be replaced by deviations from its mean, Yt − µ; 

• B is the backshift operator, such that BYt = Yt−1; 

• s is the seasonal period (s = 12 for monthly data, s = 4 for quarterly data, …); 
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• φ(B) = (1 − φ1B − ... − φpB
p
) is the non-seasonal AutoRegressive (AR) polynomial of order p 

and Φ(B
s
) = (1 − Φ1B

s
 − ... − ΦPB

sP
) is the seasonal AR polynomial of order P; 

• (1 − B)
d
 and (1 − B

s
)

D
 imply, respectively, the non-seasonal differencing of order d and the 

seasonal differencing of order D (generally d = 0, 1, 2 and D = 0, 1); 

• θ(B) = (1 − θ1B − … − θqB
q
) is the non-seasonal moving average (MA) polynomial, Θ(B

s
) =  

(1 − Θ1B
s
 − ... − ΘQB

sQ
) is the seasonal MA polynomial; 

• at ∼ WN(0,σ2
) is a white noise process with mean zero and variance σ2

. 

In order to build ARIMA models the so called Box-Jenkins approach is used. It consists of an iterative 

scheme containing three stages: i) model identification, i.e., the selection of a tentative model, in 

particular the selection of the degree of regular/seasonal differencing and the orders of the stationary 

AR and invertible MA polynomials; ii) estimation of (p + P + q + Q) parameters of the AR and MA 

polynomials and of the white noise variance; iii) diagnostic checking, mainly based on model 

residuals, assumed to be normally, identically and independently distributed (n.i.i.d.), on statistical 

significance of parameters and on in-sample and out-of-sample forecast performance (useful 

references are Box and Jenkins (1976), Harvey (1989), Hendry (1995)).  

In model identification, it is important to employ the smallest possible number of parameters for an 

adequate representation of the time series. This principle of parsimony is particularly important in time 

series analysis, because variables in a time series model are usually autocorrelated and cross 

correlated. If a model is not reasonably parsimonious, such correlations may lead to spurious 

relationships in the model.  

Since this model building process is often complex and time consuming, the choice of the ARIMA 

model is often based either on information criteria
1
 such as AIC (Akaike Information Criterion), its 

corrected version AICC, BIC (Bayesian Information Criterion) and others or on automatic procedures. 

As far as information criteria are concerned, they are expressed in terms of the maximum of log 

likelihood and a penalty function depending on the number of parameters. The use of these 

information criteria implies that if different models produce similar maximum values of the log 

likelihood, the model with fewer parameters should be preferred. On the contrary, an additional 

parameter should be added in the model only when the maximum value of the log likelihood increases 

substantially. Although the choice of the best information criterion is not an easy task, all information 

criteria share the general principle of parsimony. 

With reference to the automatic procedure for ARIMA model identification, it is worth emphasising 

that model identification is the most important step in the model building process influencing 

parameters estimates, forecasting and decomposition. The availability of a powerful automatic 

procedure for model identification in the most widespread procedures used for seasonal adjustment 

(Gomez and Maravall, 2001) TRAMO-SEATS and X-12-ARIMA (X-13-ARIMA-SEATS), has 

greatly simplified the seasonal adjustment, allowing a massive treatment and decomposition of many 

seasonal time series and enhancing the overall quality of data.  

                                                      
1
 Useful suggestions for a proper use of the information criteria to compare several (reg-)ARIMA models can be 

found on the X12 user manual (Census Bureau, 2013).  
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A particular class of ARIMA models is the airline model, so called because applied to a series of 

airline passengers in Box and Jenkins (1976): 

  (1 − B)
d 
(1 − B

s
)

D
Yt = (1 − θ B)(1 −  Θ B

s
) at . (2) 

It is a parsimonious model providing a good fit for many seasonal macroeconomic time series. Its 

parameters can be given a structural interpretation (see Kaiser and Maravall, 2001):  

a) the trend behaviour becomes more and more stable when θ → 1; 

b) the seasonal behaviour becomes more and more stable when Θ  → 1. 

Anyway, attention should be paid when, estimating an airline model, its parameter estimates are near 

the non-invertibility region (e.g., estimates of θ and/or Θ are −.99). In fact, two reasons can explain 

this result: either trend/seasonality are practically deterministic or the model is overdifferenced. 

Testing for the significance of a linear trend or seasonal dummies determines the correct explanation.  

Before considering a time series appropriate for ARIMA models, several prior treatments 

(adjustments) are generally needed in order to:  

• remove special effects such as working/trading day, Easter effects and other national holidays 

(calendar effects); 

• correct outliers; 

• deal with special events known a-priori through intervention variables. 

These pre-adjustments are implemented using a regression ARIMA model (hereinafter reg-ARIMA 

model), also called time series regression model or dynamic regression model (Pankratz, 1991).  

A reg-ARIMA model can be written as 

 Zt = Σ βi Xi,t + Yt (3) 

where Zt is the (observed) time series, the Xi,t are regression variables observed concurrently with Zt, 

the βi are regression parameters and Yt = Zt − Σ βi Xi,t, the time series of regression errors (hereinafter 

called linearised series), is assumed to follow the ARIMA model in (1). The expressions (1) and (3) 

define the general reg-ARIMA.  

In the reg-ARIMA model written in (3), the regression variables Xi,t affect the dependent series Zt only 

at concurrent time points, i.e., model (3) does not explicitly consider lagged regression effects Xi,t−1. 

Moreover, regression variables are deterministic variables, whose future values can be exactly 

predicted with a null forecast error. Lagged and stochastic effects can be included in the reg-ARIMA 

models implemented in the most recent releases of TRAMO-SEATS. 

In order to include regression variables in the model, user knowledge about the time series being 

treated is required. Some variables that are frequently used are generated by the programs used for the 

seasonal adjustment, while other specific variables needed to deal with specific effects/abrupts in time 

series can be create by the user. Next section deals with three main groups of regression variables: 

calendar variables, outliers and intervention variables. 
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2.1.2 Regression variables 

A. Regression variables for calendar effects 

Many economic time series, such as production, sales and turnover, are an aggregation of unobserved 

daily values and are compiled each month. These time series may contain two kinds of calendar 

effects: the trading day effect (or day-of-week effect) and moving holidays (e.g., Easter) that are set 

according to a lunar calendar.  

The trading day effect results from a combination of an underlying weekly periodicity in the 

unobserved daily data along with how many times each day of the week occurs in a given month. For 

example, July 2013 began on a Monday, so there are five Mondays, Tuesdays and Wednesdays and 

four of each of the other days. In July 2011, there are five Fridays, Saturdays and Sundays and four of 

each of the other days. Thus, the weekly periodicity along with the different numbers of each weekday 

may considerably affect time series. This can be shown comparing the sample autocorrelation function 

of unadjusted data with the one of data adequately treated for trading day effects. In fact, when the 

time series being analysed is significantly affected by these effects, its sample autocorrelation function 

may be seriously distorted. Moreover, since the ARIMA model suggested by its profile is not a 

parsimonious and easily interpretable model, these effects must be properly accounted for before a 

meaningful analysis of the data can be conducted. 

Methods used to deal with trading day effects are based on the counting of the number of specific 

weekdays in a given month t (i.e., the number of Mondays W1,t, the number of Tuesdays W2,t, …, the 

number of Sundays W7,t,). These counts are then used as regression variables and the total trading day 

effects can be written as  

 td(ξ1, …, ξ7, W1,t , …, W7,t) = Σi=1,7 ξi Wi,t (4) 

with ξi , i= 1, …, 7 representing the effects due to Mondays, …, Sundays (here ξi and Wi,t play the 

same role as βi and Xi,t in equation (3)). To avoid multicollinearity and also to consider the non-

seasonal part of the trading day effects (as required in seasonal adjustment), the trading day effects are 

constrained to vary around zero, i.e., their long run average is required to be null 

 1/n Σt=1,n Σi=1,7 ξi Wi,t = 1/n Σi=1,7 ξi Σt=1,n Wi,t = 0 (5) 

where n = 12×28 because the calendar is periodic of 28 years (if only years not multiple of 400 are 

considered in the 28 year span). It follows that relation (5) is fulfilled for Σi=1,7 ξi = 0, yielding  

ξ7 = − Σi=1,6 ξi, and therefore 

 td(ξ1, …, ξ7, W1,t , …, W7,t) = Σi=1,6 ξi Wi,t − Σi=1,6 ξi W7,t = Σi=1,6 ξi (Wi,t − W7,t) 

 TD(ξ1, …, ξ6, D1,t , …, D6,t) = Σi=1,6 ξi Di,t (6) 

with Di,t representing the contrast variables built using the variable for Sunday, W7,t. The use of 

Sunday in (6) to build contrast variables is usual in the literature. However, in a more general 

approach each day of the week could be used, depending on the features of the economic 

activities/domains being considered (see Attal-Toubert and Ladiray, 2011). 
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Additionally, another regression variable can be included to model the length of the months, namely 

the leap year variable LYt = Σi=1,7 Wi,t − lm , where  

 lm = Σi=1,7 Wi,s  for m = January, March, …, December                                           (7) 

 lm = 1/n Σt=1,n Σi=1,7 Wi,s = 28.25 for s = February and n = 4, 

is the average length of months. In particular, LYt is not null only for the months of February (0.25 

when the month t is a February with 28 days and − 0.75 when the month t is a February with 29 days). 

Sometimes in the reg-ARIMA estimation stage, some trading day parameters may not be statistically 

significant. In these cases, it is important not to eliminate the insignificant parameters, because the 

whole set of variables has to be completely retained or completely removed. On the contrary, the 

effect due to leap year, when statistically insignificant, may be omitted.  

There is a more parsimonious representation of the effects due to the composition of calendar based on 

one regression variable. It is supposed that Monday to Friday have similar effects, while Saturday is 

treated as contrast variable along with Sunday. Its final representation is: 

 WD(ξ, , Dt) = ξ Dt = ξ (Σi=1,5 Wi,t – 5/2 × Σi=6,7 Wi,t ). (8) 

Usually (6) and (8) are referred to as trading day effects and working day effects, respectively. 

As far as the calendar adjustment for working/trading days is concerned, two aspects deserve to be 

stressed: the one refers to the treatment of the national (civil or religious) holidays falling on 

working/trading days (point of view of data producers); the other concerns the interpretation of 

working-day adjusted data when they are disseminated to users (point of view of data users). 

1. Among the several methods existing to adjust for trading-day and holiday effects in 

monthly economic time series, two methodologies are widespread among NSIs 

(Roberts et al., 2009): one based on the U.S. Census Bureau's X-12-ARIMA method 

and one developed by Eurostat and suggested in the ESS guidelines on seasonal 

adjustment (Eurostat, 2009).  

a. According to the U.S. Census Bureau's X-12-ARIMA method, fixed national holidays 

falling on a particular date or on a particular working/trading day of a given month are 

expected to have fixed effects (not affecting other months) and, consequently, to be 

absorbed by the seasonal component of the series. There is no need to include further 

regressors for these holidays in the reg-ARIMA model. 

b. According to Eurostat’s method, fixed national holidays falling on trading/working 

days are included in the above mentioned regressors and treated as Sunday. These 

regressors, corrected for fixed holidays and called country specific regressors, are 

expressed as: 

 (# Mont - # holMon,t) – (# Sunt + # holMon,t) 

 … (9) 

 (# Satt - # holSat,t) – (# Sunt + # holSat,t), 

where # holMon,t is the number of fixed holidays falling on Monday for the month t, or 

 (# Mont - # holMon,t) – (# Sunt + # holMon,t) (10) 
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where # holt is the number of fixed holidays falling on Monday, Tuesday, …, Friday 

for the month t. The main drawback of these country specific regressors is that they 

show a seasonal pattern. The first panel of figure 1 represents the autoregressive 

spectrum of an example of the regressor described in equation (4): spectral peaks are 

evident at both calendar frequencies (vertical pink lines) and seasonal frequencies 

(vertical dotted red lines). As stressed in the guidelines on seasonal adjustment, 

regression variables related to calendar effects have to remove only the non-seasonal 

part of these effects, since the seasonal part will be removed in the decomposition 

stage. Since the variables described in equations (3) and (4) show seasonality, the non-

seasonal part of the day-of-week composition of the month/quarter can be estimated 

by the deviation of the number of working/trading days from their long-term 

monthly/quarterly average, i.e., removing monthly or quarterly averages (computed on 

a calendar whose length is a multiple of 28 years). 

 

 

 

Figure 1: Autoregressive spectrum of regressor described in equation (10) (upper 

panel) and of its deseasonalised version (lower panel). 
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2. Another issue concerning the interpretation of calendar adjusted data (here the adjustment 

based on one regressor is considered) refers to comparison of y-o-y growth rates computed on 

both unadjusted and calendar adjusted data (in particular index number) when the same period, 

month or quarter, of the year y and y-1 have the same number of working days. In this case, in 

fact, their equality is expected. However, there may be cases where the equality is not 

fulfilled, in particular when the additive model is used. In fact, the additive adjustment for 

calendar adjustment is not proportional to the data level with the consequence that smallest 

data are overadjusted. Moreover the size of the difference between the two types of y-o-y 

growth rates (in case of additive model) depend on the size of the unadjusted y-o-y growth 

rates: the larger they are, the larger the difference is. This is shown in figure 2 where the 

difference between the y-o-y growth rates calculated on the unadjusted and the calendar 

adjusted data is reported on the vertical axis. It depends on the levels of data to be calendar 

adjusted (here the index numbers are considered) and on the size of the y-o-y growth rates of 

unadjusted data (in the figure they are displayed in percentages). For the multiplicative model, 

the light blue surface, intersecting the vertical axis at value zero, shows that when a period 

(month or quarter) has the same number of working days for two consecutive year (y and y-1) 

y-o-y growth rates on working day adjusted data are equal to y-o-y growth rates on unadjusted 

data (their difference is null as expected). On the contrary, for the additive model, small values 

(levels) are overadjusted and differences between unadjusted and working-day adjusted y-o-y 

growth rates are larger. This is emphasised when unadjusted low levels are associated with 

large (absolute) y-o-y growth rates. This situation is very common with time series featured by 

an important seasonal component with very small values in at least one period.  
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Figure 2: Differences between y-o-y growth rates computed on unadjusted and working day 

adjusted (reported on the vertical axis). 

There are holidays that need a different correction because they are set according to the lunar calendar 

and, therefore, may fall in different days/months. One of them is Easter holiday. It represents a mobile 

holiday that may fall between the 22nd March and the 25th April, whose effects refers to the 

days/weeks before the holiday. An example is represented by the sales turnover that generally 

increases before Easter. For Christmas holiday, sales turnover also increases before the holiday, but it 

does not require a specific treatment because it falls in the same date every year.  

Adjusting a time series for the Easter effects, therefore, requires a specific variable: 

 Eγ,t*= (1/γ) × nt (11) 

where γ is the length (the number of days) of the Easter effect before Easter Sunday and nt is the 

number of the γ days before Easter falling in month t. For example, if Easter falls the 4th April, under 

the hypothesis that the effects of the holiday lasts γ = 6 days, then this variable is null except in March 

and April, when it is 2/6 in March and 4/6 in April. In February it is nonzero only when γ > 22. 

The deseasonalised and actual used version of this variable is obtained by removing the long run 

monthly averages of Eγ,t* computed on a long period (in X-12/X-13 a 500 year period of the Gregorian 

calendar is considered). 

 Eγ,t = Eγ,t* – 1/T Σt=1,T Eγ,t* (12) 

where T is the number of years in the period considered to calculate the averages. 
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The preceding paragraphs are based on three assumptions. Firstly, time series are available at monthly 

frequency. However, trading/working day effects can be found also in quarterly series, although they 

are not very common because the calendar composition of quarters does not change over time as that 

of months. In these cases, regressors are built counting the days of the week over the quarters. 

Secondly, time series are compiled aggregating daily values (flow series). If the series instead are 

compiled using the values at the end of the month (stock series), then different regression variables 

have to be used for an adequate adjustment of calendar effects (see Bell, 1984a and 1995, and Findley 

and Monsell, 2009). Thirdly, calendar effects are modelled through deterministic regression variables. 

In the ARIMA model based decomposition, Maravall and Pérez (2012) propose a stochastic 

trading/working day component (when the ARIMA model contains a regular AR polynomial, whose 

complex root has an associated frequency approximately equal to the theoretical trading/working day 

frequency) 

B. Outliers 

Macroeconomic time series are often subject to external events or abrupt changes such as introduction 

of new laws/regulations, sales promotions, strikes, recording errors and so forth. When these events 

are unexpected and their timing is unknown (e.g., recording errors), they are referred to as outliers, 

i.e., unusual observations that have a substantial impact on the time series and, consequently, on their 

analysis. Although several methods have been proposed for detection and adjustment of outliers, 

usually an automatic approach is used based on an iterative procedure (for details see Chen and Liu, 

1993 and Gomez and Maravall, 2001a). 

There are several reasons for outlier detection and adjustment in time series analysis (Pankratz, 1991): 

a. understanding the time series under study; 

b. discovering spurious observations such as recording errors; 

c. simplifying the structure of the model and improving parameter estimates; 

d. improving the forecasting performance. 

All these motivations may have moderate to substantial impact on the seasonal adjustment of time 

series, in particular the improvement of the estimation of components (especially in an ARIMA model 

based approach) and the reduction of the revision size for seasonally adjusted data (when new 

observations are added).  

In this section four types of outliers are presented, while their allocation to the different components is 

considered in section 3.  

1. Additive outlier (AO) 

An additive outlier is an event that affects a time series for one period only, t = t0. It can be 

represented through a pulse function: 

 Pt(t0) = 1    for t = t0,   Pt(t0) = 0   for t ≠ t0. 

The reg-ARIMA model for the time series is 

 Zt = ωAOPt(t0) + Yt 
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where the value ωAO, to be estimated, represents the deviation from the “true” value of Yt and 

Yt is assumed to follow the ARIMA model in (1). 

2. Level shift (LS) 

A level shift is an event that affects a time series permanently from a period t = t0 onward. It 

can be represented by a step function: 

 St(t0) = – 1    for t < t0,   St(t0) = 0   for t ≥ t0. 

The reg-ARIMA model for the time series is 

 Zt = ωLS St(t0) + Yt 

where the term ωLS St(t0) adjusts for the level of the time series Zt in first part, adapting it to the 

one of second part. 

3. Temporary change (TC) 

A temporary change is an event that has an initial impact on the time series at t = t0 and whose 

effect decays exponentially according to a factor δ ∈ (0,1), called dampening factor (i.e., the 

rate of decay back to the previous level of the time series):  

 Tt(t0) = δ 
t-to

 for t ≥ t0,   Tt(t0) = 0   for t < t0. 

The reg-ARIMA model for the time series is 

 Zt = ωTC Tt(t0) + Yt. 

4. Seasonal outliers (SO) 

A seasonal outlier is an event that affects one period (month or quarter) of a time series 

permanently from time t = t0 onward (Kaiser and Maravall, 2003). It can be represented by the 

following function (assuring null annual averages): 









−−

≥

<

=
− otherwise.)1(

for 0

 aster month/quar same  and for 1

)(
1

0
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0

s
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tttt

tSOt  

where s is the seasonal period (s = 12 for monthly data, s = 4 for quarterly data). 

The reg-ARIMA model for the time series is 

 Zt = ωSO SOt(t0) + Yt 

where the term ωSO SOt(t0) adjusts for the level of the month/quarter of the time series Zt in 

first part and slightly modifies the level of the other months/quarters. As requirement of 

seasonal adjustment, the annual sums of the variable SOt(t0) are always null. In fact, in the 

decomposition of a time series the SO are assigned to the seasonal component and, therefore, 

have to be removed from the seasonally adjusted series without modifying the annual sums (or 

averages) of the unadjusted series. 

There is another type of outlier, called innovational outlier (IO), which affects a time series from a 

period t = t0 onward according to the ARIMA model of the process. It can be considered an AO 
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altering the white noise process at (see Chang, Tiao and Chen (1988) for further details and 

references). It is not considered here as it cannot be treated in the decomposition.  

As far as outliers are concerned, the issue of detect an outlier at the end of a time series has to be 

stressed. In order to identify the type of an outlier some observations after the time of the occurrence 

of the event are needed. When the event occur at the end of the series under study, we are able to 

detect the outlier (unless its effects are moderate or negligible), but we cannot identify its nature 

(type). Although this inability affects neither the estimates of the model parameters, nor the estimated 

seasonally adjusted series (unless the detected outlier is a SO), it can seriously affect the estimation of 

the other components (i.e., trend and irregular) and the forecasting of both the unadjusted series and its 

components. As a consequence, attention should be paid when an outlier is detected at the end of the 

series. Some recommendations are listed below: 

1. avoiding outliers at the end of the time series, unless they have a substantial impact on the 

parameter estimates; 

2. if an outlier is detected at the end of the series, information should be collected to explain the 

reason of the outlier; 

3. when an outlier at the end of the series is included in the model, its type should be checked as 

new observations become available. 

As final remark, it is worth noting that all the outliers considered in this section can be detected 

automatically in the most recent releases of X-13 and TRAMO-SEATS. However, as far as the 

detection of SO is concerned, the plot of seasonal-irregular ratios computed on the preliminary 

components before adjusting for outliers may be very useful. 

C. Intervention variables 

As already said, macroeconomic time series are often subject to external events or abrupt changes such 

as introduction of new laws/regulations, sales promotions, strikes, recording errors and so forth. When 

these events are known (e.g., introduction of new laws/regulations) they are referred to as 

interventions. Intervention analysis is the method to incorporate such effects on the models. It is not 

considered in this section (an exhaustive treatment is presented in Box and Tiao, 1975). 

2.2 Decomposition in TRAMO-SEATS and X-12-ARIMA  

Completed the preliminary treatment aimed at removing the calendar effects, the outliers and other 

deterministic effects and estimating possible missing values, the resulting time series (the so-called 

linearised series
2
) are decomposed into the unobservable or latent components trend-cycle, seasonality 

and irregular. The most widespread procedures used by NSIs and other international agencies to 

produce official seasonally adjusted data are TRAMO-SEATS and X-12-ARIMA (they are also 

suggested by the ESS guidelines on seasonal adjustment). The former implement an ARIMA model-

based decomposition, while the latter decompose a time series applying moving averages according to 

a recursive approach. Notwithstanding, these procedures have some common features: firstly, the 

models used are linear stochastic processes parametrised in the ARIMA-type format; secondly, to 

fulfil the previous assumption, the series needs some modification, called pre-treatment. So, assuming 

                                                      
2
 It is called linearised series because it can be assumed to be generated by a linear process. 
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an additive decomposition, the seasonal adjustment performed through the two approaches can be set 

in a unique framework described in figure 3. Given an observed time series, Xt, a reg-ARIMA model is 

estimated on it to derive: i) the regression effects, representing the deterministic part of the series; ii) 

the autocorrelated disturbance of the regression, modelled with an ARIMA model, representing the 

purely stochastic part of the series (i.e., the linearised series Yt). This latter is decomposed, obtaining 

the stochastic components, hereinafter called simply components. The final components are derived 

summing up the regression effects to the components, according to their nature. Considering only the 

most frequent effects treated, the following rules are generally considered: 

1) calendar effects and seasonal outliers are assigned to the seasonal component (so they do not 

appear in the seasonally adjusted series); 

2) level shifts and ramp effects are assigned to the cycle trend; 

3) transitory changes and additive outliers are assigned to the irregular component. 

There is another practical reason to require pre-adjustment: filters used to estimate the components are 

two-sided filters involving past, present and future observations (and consequently past, present and 

future outliers or special effects/events), that is 

St = …+ υ-2 Yt-2 + υ-1 Yt-1 + υ0 Yt + υ1 Yt+1 + υ2 Yt+2 + … 

= (…+ υ-2 B
2
 + υ-1 B + υ0 + υ1 F + υ2 F

2
 + …) Yt = υ(B, F) Yt. 

In order to avoid this, such effects are removed and, after the decomposition, they are re-assigned to 

the components. 

 

 

Figure 3: Pre-treatment and decomposition of a time series using reg-ARIMA models. 
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This section focuses on the decomposition of the linearised series (left side of figure 3): the approach 

based on moving averages (ad hoc filters) is presented in subsection 2.2.1, the ARIMA model based 

approach is described in subsection 2.2.2. 

2.2.1 The moving averages based decomposition of X-12-ARIMA 

The X-12-ARIMA decomposition can be viewed as sophisticated use of non-parametric smoothing 

based on filtering techniques. The two elements are combined into an algorithm that also takes into 

account extreme observations. 

 

Moving averages  

A time series can be smoothed by using the three-term simple (equal weights) moving average  

( ) 3/11 +− ++= tttt YYYP
            

(13) 

This method is called a 3x1 moving average. One may perform such smoothing twice to obtain a 3x3 

moving average. That is, the smoothed series is calculated as a three-term simple moving average of a 

three-term simple moving average. Then, it follows that  

( ) 9/232 2112 ++−− ++++= tttttt YYYYYP           (14) 

The centre of four successive observations is between two time periods. The mean of two four-term 

simple averages is, however, centred at a time period. This is called a 2x4 moving average and the 

expression is  

( ) 8/222 2112 ++−− ++++= tttttt YYYYYP           (15) 

Equations (14) and (15) are examples of two five-term general moving averages. The set of weights is 

also called a filter and in this case the filter length is five. One may write these two filters in a more 

compact form as [1,2,3,2,1]/9 and [1,2,2,2,1]/8. Since we have symmetry this can also be written as 

[1,2,3]/9 and [1,2,2]/8 (centre underlined).  

With a fixed filter length, the variance is minimal when the weights are equal. Of course, one can 

always reduce variance by increasing the filter length. The best filter reduces variance (eliminate 

noise) without losing too much relevant information. Accordingly, the filter length depends on the 

variability of the series. 

At the beginning and the end of the series asymmetric filters can be used to solve the problem of non-

available observations. An example of an asymmetric filter is [-0.034, 0.116, 0.383, 0.534, 0, 0, 0]. 

This filter is an asymmetric variant (Musgrave) of the 7-term Henderson filter. More details about 

Henderson filters can be found below. 

 

The initial decomposition  

Below we consider both the additive ( tttt ISTY ++= ) and the multiplicative model ( tttt ISTY = ).  
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For monthly data the initial estimate of the trend is found by using a 2x12 moving average. This 13-

term filter is also known as a centred 12-term moving average. The weights are simply 

[1/2,1,1,1,1,1,1]/12. Thus  

( ) 12/62

1

54562

1

++−−− +++++++= ttttttt YYYYYYT LL
       

 (16) 

With this filter length all months are equally weighted. Therefore, a stable seasonal component will 

not affect this trend estimate. 

We now calculate the so-called SI-ratios, denoted as SI (not necessarily S times I). Note that, within 

this X-12 framework, SI is not necessarily S times I and neither it is an abbreviation of "seasonal 

index". 

ttt TYSI −=              (17) 

for additive models or  

ttt TYSI /=              (18) 

for multiplicative models. So in the case of a multiplicative model, the SI-ratio is tt IS *  and it is the 

ratio tt TY / . Preliminary seasonal factors are calculated by using the 3x3 moving average to each 

month.  

( ) 9/232 24121224 ++−− ++++= tttttt SISISISISIS
)

        
(19) 

To normalise these, averages over 12-month periods are calculated. That is, 2x12 moving averages are 

calculated.  

( ) 12/
~

62

1

54562

1

++−−− +++++++= ttttttt SSSSSSS
))

L

)

L

)))

       
(20) 

The seasonal components are now found as  

ttt SSS
~

−=
)

             (21) 

for additive models and for multiplicative models as 

ttt SSS
~

/
)

=              (22) 

The final decomposition is an improvement of this initial estimate. The underlying idea is based on 

two elements: How the trend can be estimated from a time series without seasonality and how the 

seasonal component can be estimated from a time series without a trend. 

 

Finding a trend when seasonality is not present 

To find the trend when seasonality is not present is a question of smoothing the time series. The initial 

trend estimate used equal weights for most months. Curvature trends are, however, better fitted using 

different weights. In fact, one may use negative weights at the ends. This is the case for the so-called 

Henderson filters (Henderson, 1916) which is used by X-12-ARIMA to obtain the trend. These filters 

are constructed so that filtering of third degree polynomials leave the time series unchanged. Another 

criterion is that the sequence of weights should be as smooth as possible. Further details can be found 
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in Ladiray and Quenneville (2001). As noted in this reference, the coefficients of these moving 

averages may be calculated explicitly. For an order 2p+1 average, by letting n=p+2, the coefficients 

for ppi ,,K−=  can be written as  

)254)(94)(14)(1(8

]11163][)1][(][)1[(315
2222

22222222

−−−−

−−−+−−−

nnnnn

inininin

      

 (23) 

When using X-12-ARIMA it is possible to specify the filter length manually. Otherwise, the default 

automatic method will, in the case of monthly series, use 9, 13 or 23 terms. For quarterly series, the 

program will choose either a 5- or a 7-term Henderson moving average. Using the notation above, the 

weights of these two filters are [-21,84,160]/286 and [-42,42,210,295]/715, respectively. The 13-term 

Henderson filter is [-325,-468,0,1100,2475,3600,4032]/16796.  

 

Finding the seasonality when a trend is not present  

The seasonal component is found by applying moving averages to each month or quarter. One 

alternative is to calculate the simple average of all the values for each month or quarter. This is called 

a stable seasonal filter. When using other filters it is allowed the seasonal component to vary along 

time. The older versions of X-12-ARIMA used a 3x5 moving average as default. This is a 7-term filter 

with weights [1,2,3,3]/15. For monthly data this means that a seasonal average would be calculated as  

( ) 15/23332 362412122436 +++−−− ++++++= tttttttt YYYYYYYP        (24) 

Other possible filters are, 3x1, 3x3, 3x9 and 3x15. Note that the latter filter is simply 

[1,2,3,3,3,3,3,3,3]/45. By default, the filter type is selected automatically by the program. 

 

The combined algorithm  

As mentioned above, asymmetric filters can be used at the beginning and the end of the series. 

However, X-12-ARIMA still uses symmetric Henderson filters to calculate the trend at the end of the 

series. Forecasts from the reg-ARIMA modelling are then used in place of the unobserved values.  

The algorithm for calculating the trend and seasonal components starts with initial estimates as 

described above. The whole algorithm involves several steps. One element is downweighting of 

observations with an extreme irregular component. Iterations are therefore needed. At each stage it is 

possible to obtain a seasonal adjusted series (seasonality not present) or a series based only on the 

seasonal and irregular components (trend not present). This way the final estimates are calculated 

according to text above (“Finding a trend when seasonality is not present” and “Finding the 

seasonality when a trend is not present”). For details, see Dagum (1980), Findley et al. (1998) and 

Ladiray and Quenneville (2001). 

2.2.2 The ARIMA model based (AMB) decomposition of SEATS 

In the ARIMA model based decomposition, filters depend on the time series features because they are 

derived from the ARIMA model estimated on the data. Moreover, it is possible to do inference on the 

estimated components (because their theoretical properties are known) and to derive forecasts for the 

components together with their confidence intervals.  
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In order to understand how a filter can depend on the time series features let us consider the following 

examples (drawn from Maravall, 2012): 

1) Yt = at, with at ∼ WN(0,σa
2
) 

The time series is not seasonal, that is the seasonal component St = 0, so the filter applied to Yt 

to derive st = 0 should be υ(B, F)=0. 

2) (1 + B + … + B
s
)Yt = wt, with wt having an MA structure 

The time series is the seasonal component, that is St = Yt, so the filter applied to Yt should be 

υ(B, F)=1. 

Figure 4 represents the steps of the AMB decomposition. Given the model for Yt, firstly the models of 

the unobserved components are derived (if an acceptable decomposition exists), then the Minimum 

Mean Square Error (MMSE) estimators for components are computed and finally component 

estimates are derived. 

 

 

Figure 4: A representation of the AMB decomposition method. 

I. Model for Yt 

Given an observed time series, the first step is the identification of the (multiplicative seasonal) 

ARIMA model: 

),0(~,)()()()( 2

att

s

t

D

s

ds
WNaaBBYBB σθφ Θ=∇∇Φ , 

Using a more compact notation, it can be re-written as  

tYtY aBYB )()( θφ = . 

It is worth stressing that the previous model is, in general, invertible and non-stationary. In particular 

non-stationarity, 0, >Dd , allows for evolving trend and seasonal component whose features change 

over time. 

II. Decomposition of the model for Yt 
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The AR polynomial )(BYφ  is factorised, allowing the definition of the components of a given series. 

For example, if the AR polynomial )(BYφ  is 4∇∇  (the product of the regular and the seasonal 

differencing operators), then it can be factorised as 24

4 )1()1)(1( BBB −=+−=∇∇  

SBBB
232 )1( ∇=+++ , where the factor 2∇  implies the presence of the trend and the factor S (the 

annual aggregation operator) implies the presence of the seasonal component. Therefore, the series can 

be decomposed into trend, seasonality and irregular: 

 
tttt ISTY ++= . (25) 

These components are assumed to follow ARIMA models 

 tTTtT aBTB ,)()( θφ =  (26) 

 tSStS aBSB ,)()( θφ =  (27) 

 tIt aI ,=  (28) 

where )(Biφ  and ),(Biθ  ,, SPi =  are finite polynomials in B of order pi and qi, respectively, having 

no common zeros and all zeros lying on or outside the unite circle.  

As far as the ARIMA model for the trend is concerned (equation 24), generally )(BTφ  is non-

stationary since it contains the regular differencing operator, either )1( B−=∇  or 
22 )1( B−=∇ , 

while the r.h.s. of the model allows the trend to evolve over time (i.e., a stochastic trend). The upper 

two panels of figure 5 compare a deterministic and a stochastic trend. With reference to the model for 

the seasonal component (equation 25), usually )(BSφ  is non-stationary and contains the annual 

aggregation operator, )1( 32
BBBS +++=  for quarterly series or )...1( 112

BBBS ++++=  for 

monthly series; the r.h.s. of the model allows the seasonal component to evolve over time but 

preserving regular fluctuation locally. In the lower two panels of figure 5 a deterministic and a 

stochastic seasonal component are displayed.  

 

Figure 5: Deterministic and stochastic components. 
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In the representation (24-26) the following assumptions are fulfilled: 

1) the variables tTa , , tSa , and tIa ,  are mutually independent white noise processes, identically 

and independently distributed as ),0( 2

TN σ , ),0(
2

SN σ and ),0( 2

IN σ ; 

2) the autoregressive polynomials )(BTφ  and )(BSφ  do not share common roots; 

3) the moving average polynomials )(BTθ  and )(BSθ  have roots lying on and outside the unit 

circle and do not share unit common zeros. 

The first assumption implies independent components and is based on the consideration that causes of 

the different components are not much related (e.g., weather causes seasonal fluctuations, while 

technology and investment cause the evolution of the trend); the second assumption implies that 

different components (generally non-stationary) are associated with different spectral peaks; the third 

assumption admits non invertible components and guarantees the invertibility of the model for Yt.  

Exploiting a different representation of the models for both Yt and components 
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from relation (25) the following identity can be derived  
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Multiplying both sides for the factorisation of )(BYφ , i.e., )()( BB ST φφ , the following identity is 

obtained 

tISTtSTStPSTtY aBBaBBaBBaB ,,, )()()()()()()( φφφθφθθ ++= . 

Assuming, in general, that )(BTθ  and )(BSθ  have the same order of )(BTφ  and )(BSφ , respectively, 

by equating the autocovariance function of both sides one can get a system of equations whose 

unknowns are the parameters of )(BTθ , )(BSθ  and the variances 
2

Tσ , 2

Sσ  and 
2

Iσ . Two issues have to 

be stressed: 

a) some models do not admit a decomposition, because some components may have a negative 

spectra; 

b) if a model admits a decomposition, since the number of unknowns are greater than the number 

of equations, infinite decompositions exist and a choice must be made. This 

underidentification problem is solved through the canonical decomposition, i.e., the 

decomposition that maximises the variance 
2

Iσ  and, therefore, minimises the variances 
2

Tσ  

and 2

Sσ . Minimising the latter variances means that the trend and seasonal component are 

made as stable as possible, remaining compatible with the model for Yt, and their models 

became noninvertible. 

III. Estimators for the components 
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The optimal estimators of the trend, seasonal and irregular component are computed as the MMSE 

estimators, that is as a conditional expectation of St given { TYYY ,...,, 21 } (here St represents the more 

generic signal) 

),...,,|( 21

^

Ttt YYYSES =  

Assuming the multivariate normal distribution, this conditional expectation is a linear combination of 

TYYY ,...,, 21  and it can be obtained through either the Kalman filter or the Wiener-Kolmogorov (WK) 

filter. The latter is considered because it is more useful for analysis.  

a) Historical or final estimators ( ∞→T ) 

t

j

jtt YFBYFBS 







++== ∑

∞

=1

0

^

)(),( υυυ  

where ),( FBυ  represents the WK filter, that is shown to be centred in t, symmetric and 

convergent in B and F as it represents the autocovariance generating function of a stationary 

model.  

b) Preliminary estimators (finite realisation) 

e

Tt

t
Tt YFBS ||

^

),(υ=  

where ),( FB
tυ  is the truncated filter and 

e

TtY |  is the “extended” series, i.e., the series extended 

with forecasts and backcasts, with t

e

Tt YY =|  if t <= T and 
e

TtY |  is the forecast or the backcast if t 

> T or t < 1. In the particular case t = T, TTS |

^

 is called concurrent estimator. 

Figure 6 shows some examples of WK filters to derive the historical estimates of the components. 

 

Figure 6: Examples of WK filters 
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IV. Computation of component estimates: some remarks 

The application of the filters (derived from the ARIMA models) to the observed (linearised) series 

produces the estimates for the components. The comparison of their properties with the (theoretical) 

properties of estimators (available only in a model-based context) represents a useful diagnostic tool to 

assess the decomposition.  

1) Convergence is an important property of filters since it allows us to truncate them when 

applied to the observed (linearised and extended) series. In many applications it is reached 

after three-five years, so with a time series of 20 years, the estimates for the central years (10-

14 years) can be considered final. 

2) Symmetry of filters requires the extension of the series with forecasts. As new observations 

become available, forecasts are replaced with new data and therefore previous component 

estimates are revised. The revision size depends on the forecast error: the better the series can 

be forecasted, the smaller the revisions in the preliminary estimates will be. This stresses the 

importance of the identification of the ARIMA model for the observed series, from which 

depend the properties of both the component and the estimators. 

3) Generally, for stable components the convergence of the preliminary estimates to the final 

ones is slow, while for highly stochastic components the convergence is more rapid but with 

larger revision errors (trade-off between stability and convergence).  

2.3 STS model based decomposition 

Time series components in a STS-model 

The biggest difference between a Structural Time Series model and an ARIMA-based model, such as 

TRAMO-SEATS or X-12-ARIMA is in the formulation of the unobserved components. While the 

components, such as trends and cycles, do not have a direct interpretation in an ARIMA-based model, 

in a STS model this interpretaton is straightforward and direct.  

An ARIMA-based decomposition requires a preparatory step including reg-ARIMA- or TRAMO 

procedures to clean the data from irregularities. In this step differencing of time series to achieve 

stationarity is almost always imposed resulting in the loss of degrees of freedom. However, for some 

very noisy series the stationarity can not be achieved in this way, not even if differencing is performed 

several times. Hence, applying this approach would result in a relatively bad estimates of the so called 

de-noised series (the error from reg-ARIMA procedure). As this de-noised series is the one to be 

decomposed into the seasonal effect, the trend-cycle and the irregular component, such an approach 

which would in turn lead to a large uncertainty in the estimated components.  

The STS models on the other hand do not suffer from the stationarity issues since a time series 
tY  to 

be decomposed is directly formulated as the sum of the above mentioned components. Hence, 

differencing to achieve stationarity is not necessary. Furthermore, the STS models do not require 

forecasting to obtain the end-point estimates which is an important advantage over the ARIMA-model 

based methodology. In principle, a univariate STS model may be viewed as a regression model where 

the explanatory variables are components from the classical decomposition model for a time series Yt, 

as formulated here 
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  ,,,1         , TtISTY tttt K=++=
         

 (29) 

where Tt is trend, St is seasonal component and It is irregular component. The explanatory variables are 

thus functions of time and the parameters are time-varying. As an STS-model may be expressed in 

many different and complex ways, the first step in the analysis is to find out which modeling 

alternative is most suitable for a particular time series or a set of time series. This issue is crucial and 

may appear similar to ARIMA-model based methodology. However, the difference between ARIMA-

models and STS-models in this context is big: the STS-modeling framework does not need de-noising 

of original series in order to obtain a de-linearised series of errors to be decomposed into the basic 

time series components, which is needed for the reg-ARIMA (TRAMO) part of the ARIMA-model 

based procedures. Instead, the decomposition is applied directly to the original series, which is treated 

as a dependent variable. Hence, the pre-treatment step in the STS-models is reduced to find out a 

plausible modeling alternative within this framework. Once this choice is made the estimation of both 

the unobserved time series components and the possible other explanatory variables (e.g., calendar 

factors) is done in one single step. The decomposition is made as an integrated process through a state 

space form where the state of the system is represented through the unobserved components, such as 

trend-cycle and seasonal components (for details about the state space models see, e.g., Durbin and 

Koopman, 2001).  

Basic Structural Model  

Here is given a brief description of the basic STS-model and its components. See, e.g., Harvey (1990) 

for a more sophisticated description. 

In its most basic form a STS-model may be formulated as follows 

  ,,,1         , t Tty ttt K=++= εγµ           (30) 

( )2

t ,0  ...~ σε Ndii , 

where µt, γt and εt are the trend, seasonal factor and irregular component, respectively. The expression 

(30) is called the basic structural model (BSM). All components are stochastic and each one is 

modelled separately.  

The random error tε  is usually called the irregular component in the seasonal adjustment literature. In 

the model’s basic form this component is assumed to be a purely Gaussian white noise process, as 

indicated in (30). This implies that this component is modelled as a sequence of independent, 

identically distributed zero-mean random variables. Anyhow, the normality property is not exclusive 

since the irregular component might be modelled in different ways through a more complex modelling 

alternative. For simplicity, we focus on the basic form of a structural model where the irregular 

component is modelled either as Gaussian white noise or an ARIMA process (for details see, e.g., 

Harvey and Shephard (1993). 

Extensions of BSM 

Usually a BSM is extended to include the cyclical component and the predictor effects 
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  ,,,1         , x tjt

1

Tty
m

j

jtttt K=++++= ∑
=

εβψγµ         (31) 

where tψ  is cycle while the regression term  

jt

1

x∑
=

m

j

jβ  

incorporates effects of fixed regression coefficients that are likely to have influence on the response 

variable ty .  

Interventions may be included as regression effects as dummy or pulse variables, as explained in 

Harvey (1990, pp. 397-399). This approach is similar to RegARIMA approach but also allows for 

some extensions, for example, treating of changes in seasonal pattern. 

Modelling the trend component 

As mentioned earlier, each unobserved component may be modelled in a different way. As trend-

component is defined as the natural tendency of a series in the absence of any noise (seasonality, 

effects of exogenous variables and unexplained variation expressed in the irregular component) it is 

natural to start with determining a good general model by modelling the trend in an optimal way. Two 

most common models for the trend component are the random walk (RW) model and the locally linear 

time trend (LLT) model. The RW model may be described as a model where the trend movement 

depends on the variance of the error term: 

( )2

tt1 ,0 ...~          , ησηηµµ Ndiitt += − .         (32) 

If this variance (
2

ησ ) is zero then the trend is simply a constant.  

The LLT model involves both the level and the slope in the trend representation: 

( )
( )2

1

2

tt11

,0 ...~                     ,

,0 ...~          , 

ttttt

ttt

Ndii

Ndii

ξξξβξ

σηηβµµ η

+=

++=

−

−−

        

 (33) 

 In (33) the disturbances 
tη and 

tξ are assumed to be independent of each other and also independent 

of the main error tε  in (31). The stochastic slope 
tβ  follows a random walk model.  

Expansions of these two basic models for trend are possible but this is usually not needed. 

Model for cyclical component 

The cyclical component (cycle) is treated as either deterministic or stochastic, depending on how the 

model is specified. A cycle is usually represented by period, amplitude and phase. A deterministic 

cycle assumes time-invariant amplitude and phase during the consecutive fixed periods meaning that 
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the cyclical variations are repetitive and predictable. A model with stochastic cycle, on the other hand, 

is motivated by the fact that the cyclical variations usually vary over time influenced by random 

disturbances.  

A deterministic cycle as a function of frequency λ , which is measured in radians, is expressed as a 

mixture of sine and cosine waves. This cycle depends on two parametersα and β , as shown here 

( ) ( )ttt λβλαψ sincos += .           (34) 

If t is measured on a continuous scale the amplitude will be 2/122 )( βαω +=  and the phase is 

( )αβφ /tan 1−= . This will lead to an equivalent formulation of the cycle in terms of the amplitude and 

phase as 

( )φλγψ −= tt cos .            (35) 

In most applications this pure deterministic form is not used. Instead, the cycle is usually built up 

recursively as a sum of cycles of different frequencies and amplitudes. This formulation leads to a 

stochastic cycle model of the following form 
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For more information about the properties of the specification and parameters in (36) see, e.g., Harvey 

(1990, pp. 38-39). 

Modelling seasonal component 

Seasonality in the context of STS-models is modelled in a way that allows for correction to the general 

trend of the series due to the periodic variations within a year. The simplest representation is a model 

of deterministic seasonality with the seasonal effect coefficients 
tγ  sum up to zero over a year. This 

model is described by the following expression 

( )2
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+= ,         (37) 

where s is the number of seasons in the year, 
tω
 
is a random disturbance term with zero mean and 

variance 2

ωσ  and the dummy variable jtδ  is equal to one in season j, zero otherwise. This model may 

be extended to have coefficients that may also change over time which would lead to a model for 

stochastic seasonality. One such model is the model where each seasonal effect is modelled as a 

random walk process, as follows 

( ) sjNdiitjttjt ,...,1   ,,0 ...~                  , 2

1, =+= − ωσωωγγ ,       (38) 

where the requirement that the seasonal components always sum to zero is accomplished by the 

restriction that the disturbance term sum to zero at each point in time. 
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Instead of dummy variables a model for seasonality may involve a set of trigonometric terms in a way 

similar to cycle representation in (36). A fixed seasonal pattern can also be modelled by a set of 

trigonometric terms at the seasonal frequencies [ ]2/,,1    ,/2 sjsjj K== πλ , where [ ]2/s  implies 

rounding down to the nearest integer, leading to the following expression 
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A seasonal pattern in (39) may be allowed to evolve over time in a similar manner as the stochastic 

cycle in (36) which would lead to different extensions of the basic models for seasonality. See, e.g., 

Harvey (1990, pp. 40-42 ) or Harvey and Shephard (1993) for more details. 

Modelling the Irregular Component 

The structural dynamics of a response series  ty is captured by the previosuly explained components, 

such as trend, cycle, seasonal and regression effects. Hence the irregular component represents the 

unexplained remaining part in the series which corresponds to residual variation in an ordinary 

regression model. This residual variation might be treated in different ways from a very restrictive 

representation such as Gaussian white noise to far more complicated structures. 

Statistical treatment: estimation, decomposition and diagnostic checking 

In statistical sense the STS-models are usually treated through a general state space representation by 

using the Kalman filter algorithm. This generalisation allows treatment of both linear and non-linear 

form of a STS-model. Usually, a linear representation will be typical in the practical work since non-

linear extensions are generally difficult to handle because of a huge variety of possible model 

specifications. An introduction to the linear and non-linear state space models is given in Durbin and 

Koopman (2001, Ch. 3 and Ch. 10, respectively). 

The general linear Gaussian state space model for a time series y (or a set of time series y with N 

elements) consists of a measurement equation and a transition equation, respectively: 

ttttt εβXαZy ++= ,         (40.a) 

tttttt ηRβWαTα ++= −1
.        (40.b) 

See, e.g., Harvey and Shephard (1993, pp. 267-268) for details about (40). The observable variable yt 

is related to a state vector 
tα  whose elements are not observable. However, the observations carry 

some information which can be estimated. This estimation is typically done by the Kalman filter, 

which is a recursive procedure for computing the optimal (in terms of the minimum mean square 

error) estimator of the state vector at time t. Hence, the state vector contains information about the 

unobserved components of time series yt, such as seasonals, trend and irregulars. The estimation of all 

parameters is performed by the maximum likelihood method via the prediction error decomposition. 

Hence, the likelihood is evaluated by the Kalman filter using a numerical optimisation method for 

maximisation of likelihood. 

See, e.g., Durbin and Koopman (2001, Ch. 2, 4 and 5) for details about the Kalman filter. 
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Since the state space form of structural models for time series is a model-based maximum likelihood 

approach it has many desirable statistical properties. As noted earlier, model selection does not rely on 

correlograms and related statistical devices in the way that the ARIMA model-based procedures do, 

which would imply differencing to obtain stationarity. This basically means that the variables and 

components are estimated in levels, which is an advantage in terms of interpretation of the estimated 

components.  

 The maximum likelihood approach within a state space framework provides a vehicle to make 

inference about the estimated components. It is relatively easy to make forecasts for each component 

with associated forecast errors since the mean square errors may be computed.  

Hence, the most important step is actually the model selection with respect to modelling of each 

component in the general structural model. Harvey (1990, p. 13) discusses the most important criteria 

for a good modelling approach: 

a) Parsimony – a simpler model should be preferred to a more complicated one meaning that a 

model with a relatively small number of parameters should be preferred to a model with large 

number of parameters. 

b) Data coherence – the chosen model should provide a good fit to the data and the residuals 

should be approximately random. 

c) Consistency with prior knowledge – if there is any relevant information in economic theory or 

from any other relevant sources the model should be consistent with this information. 

d) Data admissibility – natural restrictions should be reflected in the model’s ability to estimate 

and predict, e.g., model estimation for the variables that cannot be negative should not 

produce any negative value. 

e) Structural stability – good fit outside the sample is required. 

f) Encompassing – if a model is able to explain the results given by the rival formulation then it 

is said to encompass a rival formulation. This means that a rival model does not contain any 

information which could be used to improve the chosen model. 

Once a plausible model is chosen the application of maximum likelihood and Kalman filter is 

straightforward but the technical details are less important in this context.  

After estimation the diagnostic checking may be performed by using significant tests, usually based on 

three main assumptions concerning the residuals in the linear Gaussian state space models. These 

assumptions are independence, homoscedasticity and normality, which correspond to the general 

assumptions for a linear regression model. This is diagnosed by utilising the standardised prediction 

errors, as explained in, e.g., Commandeur et al. (2011, p. 9) or in Harvey and Koopman (1992).  

Motivation for the use of STS- models 

The two standard methods, TRAMO-SEATS and X-12-ARIMA, are widely used in official statistics 

and generally recommended by the European authorities. The reasons behind their popularity are 

natural. First of all these methods are relatively easy to interpret and implement in the statistical 

production since they are widespread across many well-supported IT-platforms. Furthermore, these 

methods have all necessary facilities that a modern seasonal adjustment procedure requires. Usually, 
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these two methods perform well in terms of short-run forecasting which makes them attractive to the 

policy makers.  

However, when certain relatively strong assumptions for the underlying time series are not satisfied 

these modelling alternatives are likely to produce poor estimates of the related components. This is 

particularly true for the time series contaminated by many aberrant observations, the time series with 

strong moving seasonality or the data with other evident non-linearities. In some cases, the STS-

models might be helpful since this framework may utilise varying coefficients for the moving 

seasonality problems or non-parametric methods (splines) to deal with non-linearities. 

The usual assumption for a basic structural model is that the variance of each component is kept 

constant but it is possible to create a more complex extension which allows the trend component to be 

dependent on the business-cycle. The time-varying confidence intervals for seasonally adjusted 

estimates may be created in this way, as proposed in Koopman and Franses (2001). 

One important issue regarding a standard seasonal adjustment from an ARIMA model-based 

procedure is how to treat calendar correction, especially with respect to estimation of moving holidays 

(such as Easter). Generally, the estimated parameters are held fixed as a result of ordinary least 

squares- or related estimation procedure. The state space framework permits these effects to vary over 

time which is practically impossible in the case with the competing methods. An example of a 

structural model involving the stochastic trading-day variations within a month is given in Dagum and 

Quenneville (1992).  

Concerning the non-linear and non-Gaussian state space models, a detailed overview may be found in 

Durbin and Koopman (2001, Ch. 10). The STS-models within a state space framework can also tackle 

problems with temporal aggregation which is usually treated by a benchmarking procedure, as 

proposed in, e.g., Durbin and Quenneville (1997).  

Furthermore, the structural state space models allows for a treatment of observations sampled at a 

higher frequency than monthly, meaning that the weekly, daily or even hourly observations can be 

treated within this framework. This is practically impossible with the two main competitors, TRAMO-

SEATS or X-12-ARIMA. See, e.g., the study about the estimation of weekly seasonal pattern for the 

UK money supply in Harvey, Koopman and Riani (1997) or the estimation of hourly electricity data in 

Harvey and Koopman (1993). A treatment of different data irregularities, such as missing observations 

and observations at mixed frequencies, is illustrated in the study by Harvey and Cheung (2000) on the 

measurement of British unemployment. 

Furthermore, if there is existence of complex relationships among different variables in a system of 

time series, a multivariate framework might be an alternative to a traditional univariate seasonal 

adjustment. Neither TRAMO-SEATS nor X-12-ARIMA have possibilities to treat multivariate time 

series. On the other hand, the univariate STS-models may relatively easily be extended to a 

multivariate framework. An overview of available software for state space models including an 

introduction into multivariate structural framework is given in Commandeur, Koopman and Ooms 

(2011). Different extensions to cope with more specific problems in a multivariate framework are 

described in, e.g., Koopman and Durbin (2000), Casals, Jerez and Sotoca (2002) and Birrell, Steel and 

Lin (2008). 
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The STS-models may also be extended to tackle the estimation problems with repeated overlapping 

sample survey. Pfeffermann (1991) proposes statistical treatment within this framework for estimation 

of population means based on rotating panel surveys when these surveys are overlapping. The 

proposed model allows for changes over time that might arise from an increase in sample size or a 

change in survey design. This framework permits a natural extension from a univariate STS-model to 

a multivariate STS-model, as described in Harvey and Shephard (1993). A monograph by Birrell 

(2008) gives a detailed description of a multivariate state space model tailored to the situation where a 

seasonally adjusted aggregate series is constructed by jointly modelling a set of sub-series. 

Some conclusions 

Obviously, the STS-models belong to a comprehensive framework suitable to almost any kind of time 

series analysis. Any ARIMA-model may be expressed in terms of a STS-model but the STS-models 

are much more than extensions of an ARIMA-modeling framework. They may involve State-Space 

approach, Bayesian approach, multivariate seasonal adjustment, non-linear models etc. The STS-

models can handle data with irregular structure, the data with missing values and they are likely to be 

robust to different misspecifications.  

Such flexibility may look attracting but these models have not been extensively used in official 

statistics. One reason for this is complexity of different modelling alternatives within this framework. 

Commonly, the methodological competence of an ordinary user at a national statistical office is rarely 

on a level required to understand the theoretical issues behind the procedures. Furthermore, the main-

stream methods are likely to perform well for a large number of time series which quite naturally 

motivate for their use. And finally, complexity is not always easy to handle – not even for a specialist.  

Anyhow, in some cases when the recommended procedures are not flexible enough to handle some 

deviations from the major assumptions they rely on, the STS-models might be helpful. 

2.4 Step by step seasonal adjustment 

The method of seasonal adjustment consists of several theoretical and practical issues which should be 

considered during the procedure in order to meet the expectations of experts and users. Although the 

modules “Seasonal Adjustment – Introduction and General Description” and “Seasonal Adjustment – 

Issues on Seasonal Adjustment” provide a comprehensive summary concerning the details, it is also 

necessary to describe the exact steps of the adjustment.  

The following figure summarises the steps which are detailed in this subsection: 
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Figure 7: Steps of seasonal adjustment (source: HCSO) 

STEP 0 – Examination of basic conditions and collection of expert information 

Before the seasonal adjustment of a time series for the first time or the revision of the model and 

parameters, some basic properties of the given time series should be examined in order to achieve an 

adequate result: 

• It is a software requirement (for both TRAMO-SEATS and X-12-ARIMA) for seasonal 

adjustment that the time series have to be at least 3 year-long (36 observations) for monthly 

series and 4 year-long (16 observations) for quarterly series. Naturally, these are minimum 

values; series can be longer for an appropriate adjustment. Series shorter than 3 years should 

not be seasonally adjusted by standard procedures, but in case of alternative, less standard 

procedures, it is possible (Hood, ECB (2003), EC (2005)). Special attention is necessary if 

series are 3-7 year-long as a result of instability problems. In this case, a general rule is to 

check the specification of the parameters several times per year (ESS guidelines). It is 

important to inform users about instability problems for short time series. However, if the time 

series is very long, the seasonal adjustment does not necessarily lead to higher quality because 

seasonality can change as time goes on. The sources of changes are the change in concepts, 
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definitions, methodology, legislative events, change of the weather, etc. If the series are not 

consistent for some reason, it might be better to shorten them for the purpose of identifying a 

more consistent seasonal pattern and to improve the decomposition. Another option in treating 

inconsistencies is to provide two separate time series, one for the latest period and one for an 

earlier period. 

• Missing observation(s) in the time series should be identified. The identification is carried out, 

for example, via graphical analysis. Too many missing values in the given series lead to 

estimation problems in the adjustment. Thus, statisticians should substitute the missing 

observations with alternative data or statistical methods in the lack of original data.  

• If series are part of an aggregate series, it should be verified that the starting and ending dates 

for all component series are the same. 

If the aforesaid conditions hold, then preliminary expert information has to be collected about the 

• calendar effects (trading/working day, leap year, moving holidays (e.g., Easter), national 

holidays) 

• outliers  

• seasonality 

• methodological change of specialisation statistics  

• methodological change of exterior factor (e.g., law, order) 

Expert information is important, especially if the diagnostics of the adjustment are inconclusive (for 

example, outlier detection at the end of a time series) or in case of manual decomposition. 

STEP 1 – Time series graphical analysis 

Graphical analysis of the original time series provides useful information to the analyst because visual 

graphs help in identifying possible problems, quality issues and give relevant information to the 

process of seasonal adjustment.  

Basic graphics 

There are basic graphs by which possible problems in the data (such as outliers, zeros, negative 

values, missing observation(s) etc.), the structure of the trend-cycle or of the seasonal component are 

revealed or the presence of seasonality is examined.  

Seasonality in a time series can be identified by regularly spaced peaks and troughs which have a 

consistent direction and approximately the same magnitude every year, relative to the trend. The 

presence of seasonality is pre-condition of seasonal adjustment. Figure 8 illustrates a clear seasonal 

pattern.  
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Figure 8: Hungarian monthly retail volume index, original series (source: HCSO) 

Outliers could strongly affect the quality of the seasonal adjustment. The impact of these abnormal 

values could distort the estimation of components, therefore the seasonally adjusted series and the 

trend (the two most published and important data about seasonal adjustment) as well. In this part of the 

analysis, outlier identification and verification are carried out by addition of basic graphs and expert 

information. For example, if the graph of the original time series shows abrupt changes or there are 

data which do not fit in the past behaviour of the series, statistician should examine if these 

phenomena are valid (so they refer to the presence of outliers), or there are sign problems in the data, 

for example, captured erroneously. The two circled data do not fit in the past behaviour of the series. 

In such case, if there is an economic explanation behind the changes, data can be outlier.  

The type of decomposition should be used automatically. Besides, there are situations when the 

diagnostics for choosing between decomposition schemes (models) are inconclusive. In this case one 

can choose to continue with the type of decomposition used in the past to allow for consistency 

between years, or if there is no experience about the past it is recommended to visually inspect the 

graph of the series.  

• If the series has zero and negative value(s), or if the difference of the trend and the observed 

data is nearly constant in similar periods of time (months, quarters) irrespectively of the 

tendency of the trend, additive model is needed.  

• If the series has a decreasing level with positive values close to 0, multiplicative model is 

considered.  

            

Figure 9: Additive decomposition                Figure 10: Multiplicative decomposition 



    

 34

Alternative approaches 

Besides, there are more sophisticated graphs, such as spectrum or autocorrelograms which are two 

important tools of detecting seasonality and trading day effects in a time series. The peaks appearing 

in the spectrum indicate periodicity in the time series corresponding to the given frequency. Some 

frequencies are more important than others:  

• seasonal frequencies show how many cycles of phenomenon are per year. For example, for 

monthly series the seasonal frequencies are (a whole period is represented by π): π/6, π/3, π/2, 

2π/3, 5π/6, which are equivalent to 1, 2, … cycle per year. Peaks at the seasonal frequencies 

indicate the presence of seasonality. Seasonality is a precondition for seasonal adjustment.  

 

 

Figure 10: Auto-regressive spectrum of time series. Clear peaks at frequency π/6 and its multiples. 

• peaks at trading days frequencies could occur due to inappropriate regression variables used in 

the model or the significant change of the calendar effect because the calendar effect cannot be 

modelled by fixed regression effect on the whole time series span. 

 

Autocorrelation is the cross-correlation of a time series with itself. It is a mathematical tool for finding 

repeating pattern, to detect non-randomness in data, such as the presence of seasonality. In an 

autocorrelogram only positive and statistically significant autocorrelation at seasonal lags is important 

because of the concept of seasonal fluctuation. Figure 11 shows autocorrelogram of monthly time 

series. It is clear to see the significant autocorrelation at seasonal lags (12 and its multiples). In 

contrast with autocorrelogram, the partial autocorrelogram does not give reliable information about the 

presence of seasonality; its usefulness is to identify the ARIMA model.  
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Figure 11: Autocorrelogram 

The time series graphical analysis can be carried out by Eviews, R, SAS, Demetra+, JDemetra+, etc. 

STEP 2 – Transformation  

When the variance of the given time series is not constant, the series should be transformed in order to 

achieve stationary autocovariance function; hence, it stabilises the variance of the original time series. 

There are several ways of the transformation such as taking the logarithm, square root or differencing. 

The most commonly used is taking the logarithm. Log-transformation is offered by both TRAMO-

SEATS and X-12-ARIMA. These software operate with automatic test which helps the user to choose 

between transformation types:  

• no transformation → additive model is considered;  

• log-transformation → log-additive model is used. 

Confirm the results of the automatic choice by looking at the graphs of the series as it is described in 

STEP 1.  

STEP 3 – Calendar adjustment 

Calendar adjustment can be executed in a number of ways. One can distinguish between proportional 

and regression methods for adjustment. Under proportional approach the effects of trading days are 

estimated by counting the proportion of them on the month/quarter. Under the regression approach the 

effects of trading days are estimated in a regression framework. If possible, the proportional approach 

should be avoided – especially in case of model-based methods. The most recent and widely used 

seasonal adjustment tools (TRAMO-SEATS, X-12-ARIMA, X-13-ARIMA-SEATS) perform calendar 

adjustment by regression method, called reg-ARIMA. Under the reg-ARIMA approach it should be 

determined which regression effects (trading/working day, leap year, moving holidays) and national 

holidays are plausible for the series.  

If an effect is not plausible for the series or the coefficients for the effect are not significant, then 

regressor should not be fit for the effect, it should be eliminated. Exception can be made in case of 

trading day regressors (see 2.1.1.).  

If the coefficients for the effects are marginally significant then it should be determined if there is a 

reason to keep the effects in the model. For example, if there are some kinds of economic explanations 

behind the effects, they should be retained. 
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It is important to distinguish between seasonal and non-seasonal component of calendar effects, since 

the seasonal part of calendar effects is eliminated by the seasonal adjustment filters under the 

decomposition procedure of time series (see STEP 6). Therefore, under calendar adjustment within the 

pre-treatment of seasonal adjustment only the non-seasonal part of the effects has to be dealt with.  

Seasonal adjustment approaches of the Demetra software family (TRAMO-SEATS, X-12-ARIMA, X-

13-ARIMA-SEATS) automatically create appropriate calendar regression variables depending on the 

chosen specification. However, the user may need to change the automatic options, for example, for 

chaining two calendars for two different time periods or modifying the calendar regression variables to 

match the national holidays which differ from the previous options of the used software. Sometimes 

the automatic test does not indicate the need for trading day regressor, but if there is a peak at the first 

trading day frequency of the spectrum of the residuals, then one may fit a trading day regressor 

manually. 

STEP 4 – Outliers 

The presence of these abnormal values distort of the seasonal and calendar components because 

seasonal adjustment methods are usually based on linear models (e.g., reg-ARIMA). Therefore, 

outliers should be identified and removed before seasonal adjustment is carried out. Besides, they give 

information about some specific events (like strikes, etc.), so valid outliers should be reintroduced 

after the adjustment. 

There are two possibilities to identify outliers. The first is when we identify series with possible outlier 

values by looking at graphs of the original series and any available information (economic, social, etc.) 

about the possible cause of the detected outlier, as in STEP 1. Since seasonal adjustment is carried out 

by software in practice, this direction is in service as an additional opportunity generally to the cheque 

of the automatic outlier detection. Therefore, the second possibility what we use is automatic outlier 

detection and correction. Outlier detection is always carried out automatically when time series are 

seasonally adjusted for the first time.  

Outlier coefficients may be statistically non-significant when time series are already seasonally 

adjusted and reg-ARIMA models are revised (generally once in a year). In this case, the user has to 

decide whether to keep them in the model. There are criteria, for example, coherence with past 

decisions, based on which we may come to our decision..  

The reliability of the seasonal adjustment depends on the number of outliers. A large number of 

outliers relative to the length of the series could result in over-specification of the regression model. 

Furthermore, it signifies if there is a problem related to weak stability of the process, or if there is a 

problem with the reliability of the data (for example, data captured erroneously). Shortening the time 

span or changing the critical value of the statistical tests may help in better modelling of outliers. 

It is important to stress the treatment of outliers at the end of the series. For example, the change of the 

type of outlier later may lead to large revisions. In this case expert information is especially important 

because the type of outliers at the end of the series are uncertain, as real extraordinary economic 

effects are often unknown, and there is no information on what happens after the latest outlier appears. 

For instance, the level shift is indistinguishable from an additive outlier in this case, since we do not 

know how the level of the series will behave. Therefore, to collect external information on the event in 

question is very useful. It would help to define the type of outliers at the end of the series.  
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STEP 5 – ARIMA model 

In the most widely used software – TRAMO-SEATS and X-12-ARIMA – seasonal adjustment are 

based on ARIMA-model methodologies. Automatic model identification usually produces satisfactory 

models. But there are cases when results are not plausible. Therefore, manual identification may be 

justified. Another situation when different ARIMA models could fit in the same series. In this case it 

is recommended by most of the statisticians to choose the simplest model with the smallest number of 

parameters with a satisfactory fit. This is better than a high-order model. During manual procedure, it 

is advisable to identify the not significant high-order ARIMA model coefficients and reduce the order 

of the model, taking care not to skip lags of autoregressive models. For moving average models, it is 

not necessary to skip model lags whose coefficients are not significant. Before choosing an MA model 

with skipped lag, the full-order MA model should be fitted and skip a lag only if that lag’s model 

coefficient is not significantly different from zero.  

Another situation in which manual identification may be justified is when automatic identification 

produces a model which, while satisfying the tests, still has some unsatisfactory features. For example, 

some individual significant correlation at fairly low lags, although the combined test on the serial 

correlations of the residuals passed. In this case it could be worth adding an extra coefficient at the 

appropriate lag to the AR or MA component. If the extra coefficient is significant and the significant 

serial correlation has been removed, the extra term may be justified. 

The model identification statistics, particularly the BIC and the AIC, are useful tools in confirming the 

global quality of fitting statistics. The application of information criteria may help in choosing among 

different models.  

STEP 6 – Decomposition  

The last step of the pre-treatment procedure for seasonal adjustment is to decompose the original time 

series into different components: trend-cycle, seasonal and irregular component. Depending on the 

nature of seasonality components, several different schemes can be connected. The most frequently 

used schemes (models) are the following: 

• additive decomposition (Figure 9), when the magnitude of seasonal effects does not change as 

the level of the trend-cycle changes. Also, any series with zero or negative values are additive. 

In this case, components are linked additively. 

• the multiplicative decomposition implies that as the trend of the series increases, the 

magnitude of the seasonal spikes also increases (Figure 10). For multiplicative decomposition, 

components are linked through multiplication. The decomposition scheme of the most 

economic time series is multiplicative.  

• log-additive scheme is to specify an additive model on the logarithm of the time series. Based 

on this fact, one of its main advantages is that the multiplicative model can be transformed to 

additive model, which is more manageable. Therefore, multiplicative and log-additive model 

are frequently considered identical. 

Before the decomposition of a time series, some modifications should be carried out on it. It is 

required to determine and remove deterministic effects such as outliers or the non-seasonal part of 

calendar effects, because the adjustment is distorted in case of their presence. After removing the 
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deterministic part we get the purely stochastic part of the series. This is the autocorrelated disturbance 

of the deterministic part. It is decomposed by filters based on linear stochastic models. We get the 

final component of the series, if regression effects (deterministic part of the series) are reintroduced in 

the components according to their nature. 

STEP 7 – Quality diagnostics 

The procedure of seasonal adjustment is very complex, so the accurate monitoring of the results before 

disclosure and disseminated is very important. A wide range of quality measures are available to 

ensure the best quality. 

Quality diagnostics of seasonal adjustment can divide into three main parts. The tree issues are the 

following: 

• model adequacy and diagnostics on the model residuals 

• residual trading day effects and seasonality in both the seasonally adjusted series and the 

irregular component 

• stability analysis 

In the first part of monitoring the results it can be examine if the model used for the adjustment is 

adequate. At ARIMA modelling, the principal tool for assessing model adequacy is the widely-used 

Ljung-Box statistic, built from autocorrelations of residuals. Of particular interest are autocorrelations 

at low lags, say 1 to 4, and at seasonal lags 12 and 24. Low Ljung-Box p-values (below .05) at lags 12 

and 24 result from one or more high residual autocorrelations and indicate model inadequacy. 

Monitoring of the seasonal moving average parameter is also important. When it is close to -1, the 

seasonal factors are highly stable; when it is close to 0, the factors tend to change rapidly. Series 

graphs and knowledge of the series can help assess how much movement in the seasonal is desirable. 

After seasonal adjustment, we can check for residual seasonality and residual calendar effects using 

spectral graphics of the decomposed seasonally adjusted series and the irregular component. Peaks at 

seasonal frequencies of the adjusted series mean that the filters used in the decomposition are not well 

adapted to the series or to a large part of it. Peaks at the trading day frequencies could indicate that the 

regression variables of the model do not suite well the series or that the calendar effects change too 

much to be captured by the fixed regression effects applied for the whole duration of the series. If 

remaining seasonality is present one has to reconsider the model specification, the regression variables 

or the time span used for modelling. 

Careful assessment of the seasonally adjusted data includes analysis about the stability of the seasonal 

component. The software report several stability diagnostics such as statistical tests or graphical 

diagnostics. Revision history and sliding spans are the most commonly used stability diagnostics. 

Revision history analyses what kinds of revisions are caused by adding new observations at the end of 

the series. It presents charts both for the seasonally adjusted and trend-cycle series. On Figure 12 each 

circle depicts the initial adjustment when this point is the last observation. The curve presents the final 

results. The closer the initial observation dots to the curve based on all available observations, the 

better the quality. Revision history table is also available in this part. This table presents the 

differences between the first estimates and the last estimates for the last four years. If some 
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observations are exceeded the given critical limit, it should be examined whether the adjustment is 

unsatisfactory or these abnormal values are, in fact, outliers. 

 

Figure 12: Revision history 

Another very important tool for stability analysis is the sliding spans. It is particularly useful for a 

series with a large number of outliers or changes in seasonality. It depicts period-to-period changes. 

The results are stable if one cannot consider values exceeding a three per cent threshold. Any larger 

value is unstable. Figure 13 shows stable seasonal factors since none of the values exceeds three per 

cent. 

 

Figure 13: Sliding spans analysis 

 

3. Preparatory phase 

 

4. Examples – not tool specific 
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5. Examples – tool specific 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 
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Specific section 

8. Purpose of the method 

The method discusses the theoretical background of seasonal adjustment with a comprehensive 

summary of methodological principles and the steps of the adjustment process: the main focus of this 

module is put on description of the decomposition based on ARIMA models, on moving averages and 

on STS-models, while the other classes of models are not treated. 

9. Recommended use of the method 

1. ARIMA: A particularly important part of seasonal adjustment is the identification of ARIMA 

models. This tool, as discussed by Box and Jenkins (1976), represents a practical way of 

dealing with moving features of seasonal time series.  

2. STS: Any ARIMA-model may be expressed in terms of a STS-model but the STS-models are 

much more than extensions of an ARIMA-modelling framework. They may involve State-

Space approach, Bayesian approach, multivariate seasonal adjustment, non-linear models, etc. 

The STS-framework can handle data with irregular structure, the data with missing values and 

they are likely to be robust to different misspecifications.  

10. Possible disadvantages of the method 

1. ARIMA: An ARIMA-based decomposition requires a preparatory step including reg-ARIMA- 

or TRAMO procedures to clean the data from irregularities. In this step differencing of time 

series to achieve stationarity is almost always imposed resulting in the loss of degrees of 

freedom. However, for some very noisy series the stationarity can not be achieved in this way, 

not even if differencing is performed several times. Hence, applying this approach would 

result in a relatively bad estimates of the so called de-noised series (the error from reg-

ARIMA procedure). As this de-noised series is the one to be decomposed into the seasonal 

effect, the trend-cycle and the irregular component, such an approach which would in turn 

lead to a large uncertainty in the estimated components.  

2. STS: This method is really flexible and robust, but these models have not been extensively 

used in official statistics as a result of the complexity of different modelling alternatives 

within this framework. Furthermore, the main-stream methods are likely to perform well for a 

large number of time series which quite naturally motivate for their use. And finally, 

complexity is not always easy to handle – not even for a specialist. 

11. Variants of the method 

1. ARIMA 

2. STS 

12. Input data 

The original time series before seasonal adjustment. 
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13. Logical preconditions 

In this module, this point is not relevant. 

14. Tuning parameters 

Not relevant. 

15. Recommended use of the individual variants of the method 

It is discussed in point 9. 

16. Output data 

The output data contains the results of seasonal adjustment: the components of time series 

after decomposition and the elimination of irregularities, and the adjusted time series. 

17. Properties of the output data  

Not relevant 

18. Unit of input data suitable for the method 

Not relevant 

19. User interaction - not tool specific 

Not relevant 

20. Logging indicators 

Not relevant 

21. Quality indicators of the output data 

The quality indicators represent the adequacy of the seasonal adjustment process. A primary 

purpose is identifying the available best model. The statistical tests such as Ljung-Box and 

Box-Pierce tests offer the opportunity to examine the adequacy of the chosen model. The 

robustness is also essentially important, which may be studied via sliding spans.  

22. Actual use of the method 

Discussed in point 9 and 10 

Interconnections with other modules 

23. Themes that refer explicitly to this module 

1. Seasonal Adjustment – Introduction and General Description 

2. Seasonal Adjustment – Issues on Seasonal Adjustment 

24. Related methods described in other modules 

1.  
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25. Mathematical techniques used by the method described in this module 

1.  

26. GSBPM phases where the method described in this module is used 

1. GSBPM Phase 6.1, 6.2, 6.3 

27. Tools that implement the method described in this module 

1.  

28. Process step performed by the method 
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