Social Network Mining

Univ. Prof. Dr. Stefanie Rinderle-Ma

Workflow Systems and Technology Group
University of Vienna
stefanie.rinderle-ma@univie.ac.at

Contents

1 Motivation
2 Data perspective
3 Model perspective
4 Analytical perspective
5 Summary

1 Motivation

- Enormous amounts of „social data" available through, e.g., social networks
- Even coining of a new term „social data revolution" \rightarrow see, for example, Wikipedia
- Possibility for asking new questions:
- Who is interacting with whom?
- Whom am I interacting with?
- Where „interacting" can be any kind of „social relation", e.g., owe money, hands over work, etc.
- Recall the three BI perspectives
- Customer
- Organization
- Production
$\square \rightarrow$ Social network analysis focuses on organizational perspective

1 Motivation

Questions:

- Which data is suitable?
- How has the data to be prepared?
- What analysis model is typically used?
- Which analysis techniques are there?

Reading and basis for these slides:

- [Scott] John Scott: Social Network Analysis. SAGE (2012)
- [GrRi] Wilfried Grossmann, Stefanie Rinderle-Ma: Fundamentals of Business Intelligence, Springer 2015 (in press)

Contents

1 Motivation

2 Data perspective

3 Model perspective

4 Analytical perspective

5 Summary

2 Data perspective

- Checking data sources \rightarrow what is there?
- Checking analysis model \rightarrow where do we want to go?
- Checking analysis questions \rightarrow what do we want to know?
- Small lookahead: the analysis model is a sociogram, i.e., a graph $G=$ (V, E) (can be directed or undirected)
a Nodes represent the entities in the social network, e.g., persons
- Edges represent the relation between these entities, e.g., isFriendOf

2 Data perspective

2 Data perspective

```
The data for example on
previous slide (in .net format)
*Network
*Vertices
1 "Simon"
2 "Maria"
3 "Frank"
*Arcs
1 2 1
2 3 1
* Edges
```

```
Difference?
*Network
*Vertices 3
1 "Simon"
2 "Maria"
3 "Frank"
*Arcs
2 3 1
*Edges
1 2 1
```


2 Data perspective

Derive the data set in .net format for the following sociogram:

2 Data perspective

Other formats:

- Adjacency matrix
- GraphML: xml-based, contains visualization information

```
<graphml> ...
```

<graph id="unnamed" edgedefault="directed">
 <node id="1">
 <data key="d0">Simon</data>
 <data key="d1">0.544782</data>
 <data key="d2">0.429213</data>
 <data key="d5">circle</data>
 </node>
 <edge id="e1" directed="true" source="1" target="2"/>
 <edge id="e2" directed="true" source="2" target="3"/>
 </graph>
</graphml>

2 Data perspective

Analysis questions:

- Who or what are identified as entities?
- What are the interesting relations to be analyzed?

Basically:

- Analysis of the entire network
- Analysis for selected nodes (entities)

Job for data preperation:

- Make decisions on the questions above
- Prepare data accordingly
- If data is big, think about sampling

2 Data perspective

	Affiliations			
		A	B	C
	1	1	0	0

What are the entities (nodes) and relations (edges) for this example (taken from [Scott])?

2 Data perspective

According to [Scott] three different representation matrices for SNA exist:

Incidence matrix		Cases		
		1	2	3
Affiliations	A			
	B			
	C			
Adjacency matrix (\rightarrow best for SNA)		Cases		
		1	2	3
Cases	1			
	2			
	3			
Adjacency matrix		Affiliations		
		A	B	C
Affiliations	A			
	B			
	C			

2 Data perspective				
According to [Scott] three different representation matrices for SNA exist:				
		1	2	3
Universities	A	1	1	0
	B	0	1	0
	C	1	1	1
Adjacency matrix		Students		
		1	2	3
Students	1	-	2	1
	2	2	-	1
	3	1	1	-
Adjacency matrix		Universities		
		A	B	C
Universities	A	-	1	2
	B	1	-	1
	C	1	2	-

Contents

1 Motivation

2 Data perspective

3 Model perspective

4 Analytical perspective

5 Summary

3 Model perspective

- As mentioned before, the basic model is the sociogram
- Model structures for SNA (based on [GrRi])
- Undirected graphs: an undirected graph G is defined as $G=(V ; E)$ with set of nodes V and set of undirected edges E .
- Directed graphs: Opposed to undirected edges, directed edges establish a relation that reflects a causal relation or a relation that is directed from one to another entity.
- Weighted Graphs: It can be also useful to assign weights to the edges in the graph, i.e., a weight $w(e)$ expressing some kind of quantitative measure for the relation.
- Connected Subgraphs: Special connected subgraphs might be of interest. A subgraph consisting of two nodes (with or without relations between them) describes a dyad, a sub-graph consisting of three nodes of interest a triad respectively.
- Dyad / triad: Two / three actors who are connected by a relation in the social network

3 Model perspective

How to build the model from the data?

1. Step: create data matrix (as described in Section 2)
2. Step: create models for different analysis tasks

3 Model perspective

Example 1: Building model from relational data

Students	SID	Name	enrolled	SID	UID	University	UID	Name
	S1	Simon		S1	U1		U1	Univie
	S2	Maria		S2	U1		U2	TUWien
	S3	Frank		S1	U2		U3	WUWien
	S4	Sally		S3	U3			
	S5	Bert		S3	U2			
				S2	U2			
			Cases					
		S1	S2			S4	S5	
	S1	-	2	1		-	-	
Cases	S2	2	-	1		-	-	
	S3	1		-		-	-	
	S4	-	1	-		-	-	
	S5	-	-	-		-	-	19

3 Model perspective

Example 1: Building model from relational data

[^0]

3 Model perspective

Example 2: Building model from log data (based on [GrRi])

<AuditTrailEntry>
<WorkflowModelElement>Evaluate presentation 1</WorkflowModelElement>...
<Originator>person001-lecturer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>Evaluate presentation 1</WorkflowModelElement>...
<Originator>person003-lecturer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>

Event Type and Time Stamp omitted
<WorkflowModelElement>plus</WorkflowModelElement>...
<Originator>person003-lecturer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModeIElement>plus</WorkflowModeIElement>...
<Originator>person004-lecturer</Originator>
</AuditTrailEntry>.000+01:00</Timestamp>

3 Model perspective

Contents

1 Motivation

2 Data perspective

3 Model perspective

4 Analytical perspective

5 Summary

4 Analytical perspective

- Basically, different measures on the sociogram
- For the entire network
- For single nodes

O In addition: local and global measures

4 Analytical perspective

Local measures for nodes:

1. degree, in-degree, out-degree

4 Analytical perspective

Local measures for nodes:

1. degree, in-degree, out-degree

	Node	Indegree	Outdegree
	1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		

4 Analytical perspective

Local measures for nodes:

1. Visualization: node sizes by out-degree

4 Analytical perspective

Is the degree meaningful?
\rightarrow Degree centrality of node \times (point centrality):

$$
\mathrm{DC}(\mathrm{x})=\operatorname{degree}(\mathrm{x}) /(\mathrm{N}-1)
$$

where N is the number of nodes in the sociogram
\rightarrow Undirected: degree; directed: out-degree; weighted: sum of all weights of outgoing edges

Node	DC
1	
2	
3	
4	
5	
6	
7	
8	

4 Analytical perspective

Interpretation degree centrality:

- When is this a useful measure? In which situations probably not?
- Example taken from [Scott]:
- Degree centrality is a local (node) measure

4 Analytical perspective

To come to a global measure, take paths instead of edges:

$$
\text { k-path centrality of node } x=\sum_{n} \text { path }(x, n)
$$

where $\mathrm{n} \in \mathrm{N} \backslash\{\mathrm{x}\}$ and path (x, n) denotes the shortest path from x to n

(based on [Scott])	A, C	B	G, M	J, K. L	others
Local centrality (abs)					
Local centrality (rel)					
GLobal centrality					

4 Analytical perspective

(based on [Scott])	A, C	B	G, M	J, K. L	others
Local centrality (abs)	5	5	2	1	1
Local centrality (rel)	0,33	0,33	0,13	0,07	0,07
Global centrality	43	33	37	48	57

- Which nodes are locally central?
- Which nodes are globally central?
- Interpretation:

4 Analytical perspective

- Another point centrality measure: betweenness centrality
- Betweenness centrality BC of a node x :

$$
\mathrm{BC}(\mathrm{x})=\sum_{i \neq j} p a t h(i, j, x) / p a t h(i, j)
$$

- Where path(i, j, x) denotes the shortest path from ito j through x.

- $B C(B)=3 / 3+4 / 4+2 / 2+3 / 3=4$
- $B C(G)=2 / 2+3 / 3+4 / 4=3$
- Interpretation: betweenness centrality estimates the role of an intermediary in a SNA, e.g., a broker

4 Analytical perspective

Result Social Network Visualizer:

BETWEENESS CENTRALITY (BC)

The BC index of a node u is the sum of delta (s, t, u) for all s, t in V
where delta ($\mathrm{s}, \mathrm{t}, \mathrm{u}$) is the ratio of all geodesics between s and t which run
through u. Read the Manual for more.
$B C '$ is the standardized $B C$.
$B C$ range: $0<B C<12$ (Number of pairs of nodes excluding u)
$B C^{\prime}$ range: $0<B C^{\prime}<1$ (C^{\prime} is 1 when the node falls on all geodesics)

Node	BC	BC'	\%BC'
1	0	0	0
2	3	0.25	25
3	4	0.333	33.3
4	3	0.25	25
5	0	0	0
Max $\mathrm{BC}^{\prime}=0.333$ (node 3)			
BC classes = 3		Normalization with factor number of all pairs: $(\mathrm{n}-1)^{*}(\mathrm{n}-2) / 2$	
$B C^{\prime}$ sum $=0.833$			
BC' Mean $=0.167$			
BC' Va	= 0.		

4 Analytical perspective

Graph metrics

- density D of a graph / sociogram $G=(V, E)$:

Interpretation?

4 Analytical perspective

4 Analytical perspective

Graph centrality:
Measures the centrality of the nodes in the graph in relation to the most central point
Let x^{*} be the node with the highest centrality in the SNA G. Then:

$$
\mathrm{GC}(\mathrm{G})=\frac{\sum_{n, n \neq x} C(x *)-C(n)}{(n-1) *(n-2)}
$$

Centrality?
Assuming degree centrality
$D C(A)=5$
$\mathrm{DC}(\mathrm{D})=\mathrm{DC}(\mathrm{E})=\mathrm{DC}(\mathrm{F})=\mathrm{DC}(\mathrm{G})=\mathrm{DC}(\mathrm{H})=1$
$\mathrm{GC}(\mathrm{G})=5^{*} 4 / 5^{*} 4=1$

4 Analytical perspective

Contents

1 Motivation
2 Data perspective
3 Model perspective
4 Analytical perspective

5 Summary

5 Summary

- There are many more metrics to analyze SNA
- Closeness
- Cliques in the graph
- Tools:
- Pajek
- Social Network Visualizer
- R
- Organizational mining (see last semester):
- Lies at the interface between process mining and social network mining
- Hence at the interface between production and organization perspective

[^0]: *Network
 *Vertices 5
 1 "Simon"
 2 "Maria"
 3 "Frank"
 4 "Sally"
 5 "Bert"
 *Edges
 122
 131

