
 

 

 

 

 

This module is part of the  

Memobust Handbook 

 on Methodology of Modern Business Statistics  

 

 

 

 

 

 

 

 

 

 

 

 

 

26 March 2014 

 



Method: Weighted Matching of Object Characteristics 

Contents 

General section ........................................................................................................................................ 3 

1. Summary ..................................................................................................................................... 3 

2. General description of the method .............................................................................................. 3 

2.1 Outline ................................................................................................................................. 3 

2.2 Preliminaries ........................................................................................................................ 3 

2.3 Calculating matching weights ............................................................................................. 6 

2.4 Quality of matching variables ............................................................................................. 9 

2.5 MC graph with matching weights ....................................................................................... 9 

2.6 Optimisation model ........................................................................................................... 10 

3. Preparatory phase ...................................................................................................................... 10 

4. Examples – not tool specific...................................................................................................... 10 

4.1 First example ..................................................................................................................... 10 

4.2 Second example ................................................................................................................. 10 

4.3 Third example .................................................................................................................... 11 

4.4 Fourth example (Soundex algorithm) ................................................................................ 11 

4.5 Fifth example (Trigrams) .................................................................................................. 12 

5. Examples – tool specific ............................................................................................................ 12 

6. Glossary ..................................................................................................................................... 12 

7. References ................................................................................................................................. 12 

Specific section...................................................................................................................................... 13 

Interconnections with other modules..................................................................................................... 16 

Administrative section ........................................................................................................................... 17 

 



    

 3

General section 

1. Summary 

Weighted matching is applied to match two data sets with many common units, on common object 

characteristics. The method is able to value the strength of possible (candidate) matches by using 

matching weights. Weighted matching can be formulated as an optimisation problem, in which the 

optimal (weighted) sum of matches is calculated, under certain constraints, such as that each record 

can appear in at most one match. The goal of the method is to find solutions to such problems, exact 

ones or good approximations. The reader is advised to consult the theme module “Micro-Fusion – 

Object Matching (Record Linkage)” prior to reading the present one. Also the reader should refer to 

the method module “Micro-Fusion – Unweighted Matching of Object Characteristics”, which can be 

viewed as a special case of the matching method described in the present paper. It also introduces 

some concepts that are not re-introduced in the current module. 

2. General description of the method 

2.1 Outline 

Various matching methods make use of matching weights. They can be used to differentiate between 

the potential matches in a matching problem. There is a variety of reasons to work with matching 

weights: you may want to express that not all of the variables are equally reliable, that is, that they do 

not have reliable scores. Or you may want to indicate that different objects corresponding with records 

that are matching candidates demonstrate a certain degree of similarity or dissimilarity. Or you may 

want to demonstrate that different objects are a certain distance apart, as measured by a certain metric. 

Or you want to use a probability to show that two objects are probably the same. Then a probability 

model is needed to quantify differences in scores on the matching key, and the resulting probabilities 

can be used as matching weights. The method described in this module uses weights to match records 

on the same object from different data sets. The module draws heavily on Willenborg and Heerschap 

(2012) to which the interested reader is referred for additional information. It is also the reason why 

several examples provided are from social statistics, rather than from business statistics. They have 

been retained as they illustrate certain points clearly. They are also indications that matching is not 

only used within the business statistics area. 

We start with some preliminary material on graphs and metrics in the next subsection. 

2.2 Preliminaries 

2.2.1 Graphs 

Graphs are convenient to describe matching. We only need a few elementary concepts from this area. 

These are presented in the current section, along with some notation and graphical conventions. 

A graph ),( EVG =  consists of a finite set of points V, also called nodes or vertices, of which some 

pairs are connected by lines (E), also called sides, edges or branches. A graph is depicted in Figure 1. 

Weights can be assigned to the lines (edges) in the form of real numbers. A graph with weights 

associated with points or edges is called a weighted graph. In this module the weights are associated 
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with the edges, and they express the strength of the match between two records. There are different 

ways to calculate these weights. In some applications, the smaller the weights the more similar the 

keys of the records are.
1
 

 

 

Figure 1. Example of a graph with two connectivity components 

A special type of graph is the bipartite graph. See Figure 2. Here, the set of nodes V can be split into 

two disjoint sets A and B. The edges only connect nodes in A with nodes in B. Bipartite graphs are 

highly suited to illustrating matching and the theory behind it. Important is the MC graph, the 

matching candidate graph. This is a bipartite graph that represents the possible matches between 

records from two files. The edges may or may not be assigned matching weights. A matching 

candidate graph symbolises part of the constraints that apply for a matching problem.  

A path in a graph is a succession of nodes arranged in such a way that an edge runs from each node to 

the following node in the row. Given a graph ),( EVG =  where v and w are two points of G, so 

Vwv ∈, . A path in G from v to w is a sequence kvv ,...,1  of points in G, such that: 

1. vv =1 , 

2. wv =2 , 

3. Evv ii ∈+ },{ 1  for all 1,...,1 −= ki . 

If there is a path from v to w in G, then there is also one from w to v (symmetry). If there is a path in G 

from u to v and from v to w, then there is also one from u to w (transitivity). Here, u, v and w are points 

in G. For each point v in G, there is – by definition – a path from v to v (reflexivity). In other words, 

the relationship ‘connected by a path in a given graph’ is an equivalence relationship on the set of 

points of the graph, i.e., a binary relationship that is reflexive, symmetrical and transitive. If there is 

only one equivalence class for a graph G, it is said to be connected. In that case, all pairs of points can 

therefore be connected with each other via paths in G. If there are two or more equivalence classes for 

                                                      
1
 In other applications it may just be the other way round. 
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a graph, G is said to be disconnected. In that case, an equivalence class of this relationship corresponds 

with a connected component of G; this is a connected subgraph of G. 

 

 

Figure 2. A bipartite graph. 

2.2.2 Metrics 

Metrics are an important concept for weighted matching. A metric is used in the present module to 

determine the matching weights. A metric is a function that defines the distance between each pair of 

elements of a set. Sometimes, it concerns a function that is related to that of a metric, but which 

deviates on several components from that of a metric. In that case, we have generalised metrics. But 

we will discuss metrics here first. 

We assume a set X for which function ),0[: ∞→× XXd is defined that satisfies a number of 

conditions:  

1. 0),( =yxd  if and only if yx = ,  

2. ),(),( xydyxd = for all yx, in X (symmetry), and  

3. ),(),(),( zydyxdzxd +≤ for all zyx ,, in X (triangle inequality). 

A non-negative function d  that satisfies conditions 1, 2, and 3 is called a metric. The conditions for a 

metric are not always needed. Replacing them is sometimes necessary and yields alternative distance 

functions, such as pseudo-metrics or hypermetrics. But in this module we stick to metrics. 

In matching and specifically in the comparison of matching keys, this concerns the measurement of 

the distances between the scores for the matching keys, or, in other words, determining the 

comparability or non-comparability.  

In general, we denote by d , Hd  or (.,.)d  a metric. We denote the scores on a matching key as a 

vector ),...,( 1 nαα  for a matching key ),...,( 1 nvv .  
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A few of the metrics we use here are so special that they are specified separately. The first one is the 

Hamming distance. Let α and β be two strings of equal length n, viewed as vectors of symbols. The 

Hamming distance between α and β is defined as:  

== )),...,(),,...,((),( 11 nnHH dd ββααβα  |},...,1,|{| ni ii βα ≠ , 

i.e., the number of places in which the vectors α  and β  have different scores. Note that the Hamming 

distance can be defined for all types of variables. 

To illustrate the Hamming distance suppose that there are two matching keys of four alphanumeric 

figures, ‘1034’ and ‘1135’ respectively. In this case, the Hamming distance is 2, because the figures 

differ in two places, which are positions 2 and 4. In other words: the smaller the Hamming distance the 

greater the comparability of the matching keys. The Hamming distance is equal to the number of 

‘elementary changes’ that must be made in one key value to obtain the other key value.  

The next metric that we want to introduce is the Levenshtein distance. Let α and β be two strings. The 

Levenshtein distance ),( βαLd counts the minimum number of elementary operations, such as deleting 

a character, replacing a character, adding a character, that are necessary to transform one string into 

the other. If another elementary operation is added, namely interchanging neighbouring characters, 

then we have the so-called Levenshtein-Damerau-distance. The Levenshtein distance and the 

Levenshtein-Damerau distance are examples of metrics that are specifically designed for strings. There 

are other metrics of this type, specifically tailored to certain types of variables. 

Consider the words ‘apple’ and ‘pear’. Their Levenshtein distance is 4. To see this consider the 

following chain of elementary changes: apple → pple → pele → peae → pear. In less than 4 steps a 

transformation from ‘apple’ to ‘pear’ using elementary transformation associated with this distance 

function are not possible, as the reader in invited to check. The advantage of the Levenshtein distance, 

compared to the Hamming distance, is that the distance of strings of different lengths can be 

calculated. 

More examples of metrics for strings and relevant for matching can be found in Section 4. 

2.3 Calculating matching weights 

There are different ways to determine matching weights that can be used in a matching problem. We 

will discuss several here. The list is not exhaustive, but it does provide several important examples. 

These matching weights are used for matching if the information about the ‘matching candidacy’ of 

two records is not represented in ‘either/or’ form (matching candidate? ‘yes’ or ‘no’), but with more 

differentiation. The extent to which two records match can be expressed in a matching weight. 

In the discussion in the sections below, we look at two data sets, A and B, that contain records, for 

which there are common matching variables nvv ,...,1  that together form the matching key, based on 

which the records in the two data sets are matched. Weights are used for candidate matches, to indicate 

the ‘strength’ of a match. See Figure 3 for such a situation. 

For more information and examples on MC-graphs, the interested reader should consult the method 

module “Micro-Fusion – Unweighted Matching of Object Characteristics”. 
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Figure 3. MC-graph with matching weights 

2.3.1 Using metrics 

For matching, it is important to find suitable metrics for each of the variables in a primary or 

secondary matching key, or rather for each type of variables. The following variables may occur in a 

secondary matching key: names (first names, surnames, enterprise names, street names, city names, 

etc.), time indications (dates of birth, ages at a certain reference time), economic activity, etc. Finding 

suitable metrics to be used for the secondary matching keys can be seen as a separate subfield in 

matching.  

We take another look at strings, as they are quite important in matching. There are several aspects to 

strings when it comes to measuring the distance between them. This depends on how we look at them: 

literally, as objects built from an alphabet, or looking at other aspects such as their pronunciation 

(phonetics) or their meaning. 

A metric can be used to calculate matching weights. These matching weights can be used to express 

the strength of a candidate match. We should add that, in practice, it is necessary to work with cut-off 

values: matches that are too weak in terms of the associated matching weight are not considered to be 

matching candidates. The trick is to properly establish these cut-off values: on the one hand too many 

irrelevant matches should be avoided but not many correct matches should be missed. In practice, this 

requires experimentation with various settings of the cut-off values. 

All the considerations to use matching weights must be derived from the processes or mechanisms that 

(may) have caused differences in the data. This could be writing mistakes (‘Dickson’ instead of 

‘Dixon’), alternative designations (‘Main Str.’ instead of ‘Main Street’), use of synonyms (‘shipping’ 

instead of ‘transporting’). It is therefore important to have thorough knowledge of the way in which 
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the data sets to be matched have been compiled. In addition, it is possible that not exactly the same 

matching variables will be used in the two data sets, or that the scores do not relate to the same 

moment in time. As a result, the attributes of entities (e.g., businesses, enterprises, etc.) could have 

changed. 

2.3.2 Using probabilities 

Matching weights can also be based on probability models. Stochastic methods can enter into 

matching for different reasons. We offer the following reasons: 

1. Errors can occur in the secondary matching keys. The errors can be present for various 

reasons. An answer to a question in a survey could have been understood incorrectly and 

therefore answered incorrectly by the respondent in question; a given answer could have been 

incorrectly processed, for example, keyed in wrongly; errors could have been made in the 

coding of answers, etc. This type of error is often referred to as a non-sampling error. The first 

step would be to identify and model all major sources of errors using probability models. 

These models can then be used to calculate the probabilities that two scores match based on 

corresponding object characteristics from two matching data sets. 

2. The reference times of the two matching data sets differ to such an extent that the effects of 

the dynamics of the population are noticeable on the units contained therein: values of certain 

scores could have been changed for some units. An enterprise could have merged, split or 

gone bankrupt. Therefore, if the reference times differ significantly from one another, it is not 

self-evident that the units and/or their scores on object characteristic variables would have 

remained unchanged. 

3. Some comparable matching variables are not defined exactly the same way in the two data 

sets. The associated question can be different, or the position in the questionnaire could have 

been changed, or the value range of comparable variables may differ slightly. In that case, it 

may sometimes be unclear which scores correspond with one another. Suppose {20,21} is an 

age class in one matching file and 11 - 20 and 21 - 30 are age classes in the other file. The 20 

and 21-year-olds are in the same age group in the first matching file, but they are in two 

different age categories in the second. We can also estimate which part of the people in the 

category (20,21) in the first file will end up in the age category 11-20 and which part will be in 

the age category 21-30 in the second file: 
2120

20

nn

n

+
, and 

2120

21

nn

n

+
 respectively, where 20n  is 

the number of 20-year-olds on the measurement date and 21n  the number of 21-year-olds at 

that point in time. 

In practice, combinations of these causes of differences often occur. Data sets can have different 

reference times, there may be processing errors in the data, and the units may not be exactly 

comparable. Section 4 presents examples of a situation as in point 3 above, and an example with a 

combination of points 2 and 3 above (variables with deviating value ranges and different reference 

times). 
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Figure 4. MC-digraph with probabilities as matching weights. 

2.4 Quality of matching variables 

In practice, based on the quality of the scores, we will want to differentiate between the different 

matching variables in the matching key. Some variables will have more reliable scores than others, 

and we will want to take this effect into account when determining the overall matching weight.  

We consider this ‘quality weight’ as a subjective weight that the person performing the matching 

establishes based on his/her knowledge and experience with the different variables in the matching 

key. It is possible that experiments must first take place before a good choice can be made about these 

weights. These weights only have meaning in terms of the relationships between them, not in an 

absolute sense. Users can express the relative importance of a variable for the multivariate distance 

function. In this way, they can influence the effect of a certain variable in the total. If the variable has 

been reliably measured, then a relatively high weight is needed. If it is a variable with relatively more 

errors than the other variables in the matching key, then this variable should be given a lower weight. 

For that matter, it is also possible to express the difference in the quality of matching variables in a 

different way, for example, when matching, by going through the scores in the order of the quality of 

the matching variables (from high to low), and then accepting certain deviations in the scores with 

increasing tolerance. 

2.5 MC graph with matching weights 

Once we have selected a method to determine matching weights, we can start calculating an MC graph 

with matching weights. We may have to use a cut-off value so that we do not have to include 

candidate matches of two records with a matching weight that is too low (they will not become edges 

in the MC graph). 
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2.6 Optimisation model 

Once the MC graph with matching weights has been calculated we are almost ready to calculate the 

matching. What is needed in addition is a specification of an object function, and matching conditions. 

The object function could be the sum of the weights associated with the edges chosen for a particular 

match. If the weights are larger in case a match is stronger, the goal would be to find matches among 

the candidate matches that maximise the sum of the associated weights. The matching conditions yield 

the constraint for the matching. A common requirement is that a record can be in no more than one 

match. 

The model that we get in this way is a well-known one in combinatorial optimisation, called bipartite 

matching. It is discussed in books like Lawler (1976, Ch.5), Papadimitriou and Steiglitz (1998, Ch.11) 

or Nemhauser and Wolsey (1988, Ch. III.2), to which the interested reader is kindly referred. 

3. Preparatory phase 

The object characteristics common to both data sets to be matched are identified. It has to be decided if 

they are suitable for this type of matching; the number of potential matches should not be too big. A 

suitable metric for these variables should be found, as well as a suitable cut-off value. This requires 

some experimenting: with the cut-off value the number of potential matches can be controlled. In case 

the matching data sets are big special measures should be taken, such as blocking to create a 

manageable matching problem.  

Now candidate matches can be found, from which the matches are to be calculated. 

4. Examples – not tool specific 

4.1 First example 

Given a matching key that consists of n  variables that are all object characteristics. For the ith variable 

we have a metric id . For the entire matching key, we can define a metric ∑=
i ii dwd , with weights 

iw , 0>iw , ni ,...,1= . 

4.2 Second example 

Let δ  be a 0-1-indicator function, defined as follows: 0),( =baδ  if ba = and 1),( =baδ  if ba ≠ , for 

scores ba, for a matching or other variable. For score vectors βα , , we define  

  n

nn }1,0{)),(),...,,((),( 11 ∈=∆ βαδβαδβα . 

This indicator vector plays a central role in the method described in Fellegi and Sunter (1969). See 

also the method module “Micro-Fusion – Fellegi-Sunter and Jaro Approach to Record Linkage” in the 

present handbook. Note that  

 ∑
=

=
n

i

iiHd
1

),(),( βαδβα . 
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4.3 Third example 

Consider a name variable, such as first name, surname, business name, street name, place name, etc. 

There are several ways in which the extent to which the distance of these names, or what they stand 

for, can be expressed: 

• String as a sequence of symbols. Here, you may want to express the extent to which two 

surnames differ from one another. The difference between ‘Jansen’ and ‘Janssen’ is smaller 

than the difference between ‘Jansen’ and ‘Todd’ (Jansen→Tansen→ Tonsen→ Todsen→ 

Todden→Todde→Todd). This concerns only the spelling of the names: the letters that are 

present and their order of occurrence. This can be quantified using a metric (the Levenshtein 

metric or Levenshtein-Damerau metric, for instance).  

• Meaning of a string. The words ‘teacher’ and ‘instructor’ are very different from one another 

as strings, but in terms of meaning (concepts), they are very close, and could even be 

considered being synonyms.  

• Pronunciation of a string The distance concept here relates to the meaning (semantics) 

associated with strings, not the way they are composed of characters from some alphabet. A 

similar difference is obtained if we consider pronunciation (say, in English) of strings, ‘Dixon’ 

and ‘Dickson’ are pronounced the same. Phonetically these strings are equal.  

The last two cases are comparable, in the sense that we do not measure the distance of the literal 

strings, but on some associated attribute (interpretation / meaning or pronunciation).  

Let d be a metric on S, and D a metric on T. Then ),( tsd  measures the distance between the strings s 

and t and ))(),(( tfsfD  the distance between the meaning of s and t, or their pronunciation. This 

would be a distance between two points in a classification (a tree), which could, e.g., be the length of 

the shortest path (in the tree) connecting these points. 

4.4 Fourth example (Soundex algorithm) 

Comparing strings taking the phonetic characteristics of English into account could be done by using a 

so-called Soundex algorithm. This algorithm maps alphanumeric strings to Soundex strings (consisting 

of a letter followed by three numerical digits): the letter is the first letter of the name, and the digits 

encode the remaining consonants. Similar sounding consonants share the same digit. 

A string (name) is mapped to a Soundex string using the following rules: 

1. Retain the first letter of the name; drop all occurrences of a, e, I, o, u, y, h, w. 

2. Replace consonants with digits as follows (after the first letter) 

• b,f,p,v→1 

• c,g,j,k,q,s,x,z→2 

• d,t→3 

• l→4 

• m,n→5 
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• r→6 

3. If two or more letters with the same number are adjacent in the original name (before step 

1), only retain the first letter; also two letters with the same number separated by ‘h’ or ‘w’ 

are coded as a single number, whereas such letters separated by a vowel are coded twice. 

This rule also applies to the first letter. 

4. Iterate the previous step until you have one letter and three numbers. If you have too few 

letters in your word that you can’t assign three numbers, append with zeros until there are 

three numbers. If you have more than 3 letters, just retain the first 3 numbers. 

Applying these rule to ‘Rupert’ and ‘Robert’ yields the same Soundex string R163. 

4.5 Fifth example (Trigrams) 

The names Hendriks, Hendricks, Hendrickx, Hendriksz, Hendrikx, Hendrix are all pronounced the 

same (in Dutch, at least), while all are different as strings. In this example we look at two of them and 

see how they differ if we look at trigrams. We consider two of them, ‘Hendriksz’ and ‘Hendrix’. For 

both names we consider the extended versions, which we obtain by adding a space (‘_’) at the start 

and end of each name. We then get: ‘_Hendriksz_‘ and ‘_Hendrix_‘ . The trigrams for the first string 

are (we write everything in lower case letters): (_he, hen, end, ndr, dri, rik, iks, ksz, sz_) and for the 

second string (_he, hen, end, ndr, dri, rix, ix_) . They have 5 trigrams in common, 5 out of 9 for the 

first string and 5 out of 7 for the second one. 

5. Examples – tool specific 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 

7. References 

Fellegi, I. P. and Sunter, A. B. (1969), A theory for record linkage. Journal of the American Statistical 

Association 64, 1183–1200. 

Lawler, E. L. (1976), Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, Winston.  

Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimization. Wiley. 

Papadimitriou, C. H. and Steiglitz, K. (1998), Combinatorial Optimization: Algorithms and 

Complexity. Dover, Mineola (NY). 

Willenborg, L. and Heerschap, N. (2012), Matching. Contribution to Methods Series. Statistics 

Netherlands, The Hague. 
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Specific section 

8. Purpose of the method 

The purpose is adding variables to a microdata set Ds-input1 from a second microdata set Ds-input2 

for the same objects in both data sets. Records from two microdata sets are combined using a set of 

common object characteristics. It can be viewed as a more general case of the unweighted matching 

method (described in the method module “Micro-Fusion – Unweighted Matching of Object 

Characteristics”). 

9. Recommended use of the method 

1.  In case object identifiers of good quality in both matching data sets are not available weighted 

matching may be considered as an option, under certain conditions. 

2. Common object characteristic values of good quality should be present in both matching data 

sets. Also if similar variables are present in both data sets (with a different, but almost the 

same domain) this method can be considered, depending on how much the domains differ. 

Observation errors can occur in the scores of these variables. 

3. The unweighted matching method can be characterised as being ‘black and white’: two 

records are either matching candidates or they are not. There is no room for any 

differentiation. However, there are situations where this is desirable. Some spelling mistakes 

or alternative designations are more likely than others. 

4. In addition, it is possible that not exactly the same matching variables have been used in the 

two data sets, or that the scores do not relate to the same moment in time. As a result, the 

attributes of an entity (individual, business, etc.) could have changed. Also in this case the 

method aims at matching records for the same object. 

10. Possible disadvantages of the method 

1. It can be too slow, as compared to unweighted matching. 

2. Values of tuning parameters require some experimentation or specialist knowledge. 

11. Variants of the method 

The text in the general section of the module places the emphasis on the basic variant for matching 

with matching weights, where the matches are 1:1. As stated earlier, there are also situations in which 

1:n, m:1 and even n:m matches are possible. This is the case for composite units such as businesses 

which, over time, can split or merge into other units. Formally, this means that the conditions under 

which matches are possible must be adapted. Also they do not relate to the same units, but to 

combinations of units that produce comparable entities. 

In the discussion we have so far assumed that all the scores on object characteristics are present. In 

practice, however, this is not always necessarily the case, and scores can also be erroneously missing. 

Calculating matching weights is more difficult in this situation, because the missing values cannot just 

be omitted: they must be replaced by stochastic variables, with a known assumed distribution. In such 

cases, the unknown parameter values must be estimated using, for example, the EM algorithm. For 
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information about the EM algorithm, see Wikipedia (http://en.wikipedia.org/wiki/EM_algorithm) and 

the references provided there. 

We can summarise the available variants as follows: 

1. Number of records in the output dataset: 

1.1 Each record of Ds-input1 is part of the output dataset (left outer join), or only 

matching records occur in the output dataset. 

1.2 Each record of Ds-input1 can occur more than once in the output dataset, or can occur 

at most once in the output dataset. 

2. Duplicate records may be present in Ds-input1 or in Ds-input2. 

3. One or more blocking variables can be used to divide the datasets for matching. 

4. Missings in the object characteristics may be present in the input data sets. 

12. Input data 

1. Ds-input1. This is the primary input data set. It is a microdata set, to which additional 

variables will be added. 

2. Ds-input2. This auxiliary input data set contains the variables that will be added to Ds-input1. 

13. Logical preconditions 

1. Missing values 

1. The object characteristic values used in the matching may contain missing values, but not 

too many, as they negatively influence the matching performance. 

2. Erroneous values 

1. Errors in the object characteristic values are allowed, but it should still be possible to use 

them for matching. With certain assumptions on the cause of the errors, they must be are 

usable owing to a small distance to the correct values.  

3. Other quality related preconditions 

1.  

4. Other types of preconditions 

1. Enough object characteristic variables must be available in both input data sets to identify 

objects in the population. Otherwise more than one record with smallest distance remains, 

and an arbitrary choice should be made from them, with a high risk on Type I errors. 

14. Tuning parameters 

1. Optimisation function. 

2. Matching weight. 

3. Cut-off values. 
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15. Recommended use of the individual variants of the method 

1.  

16. Output data 

1. Ds-output1: a microdata set containing all variables of Ds-input1, with variables added from 

Ds-input2. 

2. Optional Ds-output2 containing all non-matching records from Ds-input1. 

3. Optional Ds-output3 containing all non-matching records from Ds-input2. 

17. Properties of the output data  

1. The output data set contains all variables from Ds-input1, but with additional variables from 

Ds-input2, presumably for the same objects. 

18. Unit of input data suitable for the method 

Processing full data sets (internally blocking variables can divide a data set in smaller parts). 

19. User interaction - not tool specific 

1. Before matching the tuning parameters must be set by analysing the results for different 

values. 

2. No user interaction during matching. 

3. After matching the number of mismatches must be evaluated, and quality indicators (Type1 

and Type 2 errors). 

20. Logging indicators 

1. Number of non-matching records from Ds-input1. 

2. Number of non-matching records from Ds-input2. 

3. Time used. 

21. Quality indicators of the output data 

1. The number of mismatches or missed matches and the number of missed matches can be used 

as quality indicators. The quality of the matching method can be assessed based on the 

inspection of matches of test files. It is a labour intensive job to carry out. You must examine 

not only the matching candidates and the matches ultimately selected, but also any missed 

matches under various parameter settings. The quality indicators are influenced by the way 

that the weights are calculated, the use of cut-off values and the use of blocking variables to 

stratify large data sets. 

22. Actual use of the method 

1.  
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Interconnections with other modules 

23. Themes that refer explicitly to this module 

1. Micro-Fusion – Object Matching (Record Linkage) 

2. Micro-Fusion – Probabilistic Record Linkage 

24. Related methods described in other modules 

1. Micro-Fusion – Object Identifier Matching 

2. Micro-Fusion – Unweighted Matching of Object Characteristics 

3. Micro-Fusion – Fellegi-Sunter and Jaro Approach to Record Linkage 

25. Mathematical techniques used by the method described in this module 

1.  

26. GSBPM phases where the method described in this module is used 

1. 5.1 Integrate data 

27. Tools that implement the method described in this module 

1.  

28. Process step performed by the method 

Adding variables to microdata set 
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Administrative section 

29. Module code 

Micro-Fusion-M-Weighted Matching 

30. Version history 

Version Date Description of changes Author Institute 

0.1 21-04-2012 first version Leon Willenborg,  
Rob van de Laar 

CBS (Netherlands) 

0.2 02-07-2012 second version Leon Willenborg,  
Rob van de Laar 

CBS (Netherlands) 

0.3 11-07-2013 third version Leon Willenborg CBS (Netherlands) 

0.4 09-08-2013 revised version (using 
review comments) 

Leon Willenborg CBS (Netherlands) 

0.5 17-11-2013 revised version (using EB 
review comments) 

Leon Willenborg CBS (Netherlands) 

0.5.1 19-11-2013 preliminary release   

1.0 26-03-2014 final version within the 
Memobust project 

  

     

 

31. Template version and print date 
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