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General section 

1. Summary 

In business surveys, the distribution of variables is often highly skewed, resulting in sample 

observations that differ substantially from the majority of observations in the sample. The literature 

refers to these units as outliers. 

Outliers can be representative (representing other population units similar in value to the observed 

outliers) or non-representative (unique in the population). Here we will consider only the case of 

representative outliers, i.e., correct values representing other units in the population. Since 

representative outliers affect the variability of the standard estimators (such as: Horvitz-Thompson or 

Generalised regression estimators (GREG)), an appropriate way of handling them is required.  

The objective of outlier treatment is to make estimates for the population coherent with the real 

parameters for the population. This means that outlier treatment should be always a trade-off between 

variance and bias. For small samples, variance is usually the dominating factor in the MSE. On the 

other hand, bias dominates when the sample size is large.  

The module describes one frequently applied estimation method used to reduce the impact of outlying 

units: Winsorisation. The general idea of Winsorisation involves modifying the outlying observation 

so that it has less impact on the estimate of a parameter. The effectiveness of the Winsor estimator in 

terms of its resistance to unusually large residuals depends on the choice of cut-off values, therefore 

the methods used to estimate the robust regression parameters and the bias parameters need to estimate 

cut-off values. The cut-offs are optimal only at the level at which estimates are being conducted. The 

Winsor estimator is easy to implement, but it performs best under models (used for estimating robust 

regression parameters) that are only moderately robust. Winsorisation can be applied to a large class of 

estimators (GREG estimators, model-based regression estimators, ratio estimators) and involves 

modifying their standard forms. This results in estimates with acceptable bias and a smaller variance 

than that of standard forms, non-Winsorised estimators. We can observe the bias-variance trade-off at 

the low level of estimation but aggregated Winsorised estimates have large biases, resulting in less 

precision compared to standard aggregated estimates. 

2. General description of the method 

In business surveys target variables tend to be highly skewed and populations may contain a number 

of extreme values, the so-called outliers. Although outliers are extreme, they need not necessarily be 

incorrect but are an integral part of each survey population and cannot be dismissed in the analysis.  

According to Hawkins, “an outlier is an observation which deviates so much from the other 

observations as to arouse suspicions that it was generated by a different mechanism” (Hawkins, 1980). 

In the statistical literature outliers are observations that differ substantially from most of the 

observations in the sampled and the unsampled parts of the population. Outliers may be extreme big 

values or extreme small values. We can distinguish large outliers, if the values are extremely large 

than the other values of the “normal” units, or small outliers, if the values are extremely smaller than 

the other values of the “normal” units.  
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Two distinct types of outliers can be defined: “y-outliers” or “outliers in the y-direction” and “x-

outliers” or “outliers in the x-direction” (Rousseeuw and Leroy, 2003) where y-values and x-values are 

the study variable and an auxiliary variable, respectively. 

“Y-outliers” denote the y values of a few sample units that are very distant from the y values of other 

sample units. Another class of outliers comprises the x values of a few sample units that are very 

distant from the x-values of other sample units. These are “x-outliers”. They can have a substantial 

impact on the stability of the overall sample estimate because of their so-called “leverage” (Bergdahl 

et al., 1999).  

Some authors (Chambers, 1986; Eltinge and Cantwell, 2006) classify outliers into three groups. The 

first are representative outlier values, which represent other population units similar in value to the 

observed outliers. These are correctly measured sample values that are outlying relative to the rest of 

the sample data and we cannot assume that similar values do not exist in the non-sampled part of the 

survey population. The second group consists of non-representative outlier values, which are unique 

in the population (in the sense that there is no other unit like them) (Chambers, 1986). The third group 

comprises gross measurement errors, which are outlying observations that are not true values. 

Here we will not consider gross errors in the sampled data, caused by deficiencies in the survey 

processing (e.g., miscoding). Such errors are corrected during the data editing process (Eltinge and 

Cantwell, 2006). 

Since outliers usually have a huge impact on estimates, outlier detection and their treatment are 

important elements of statistical analysis. This is true especially when estimation is carried out at a 

low level of aggregation. In the case of small sample sizes, outliers can affect variance. Even if the 

sample size is large, the influence of an outlier can significantly increase the variance resulting in a 

decreased efficiency of estimation. Dealing with outliers has two aspects: the first one involves 

identifying outlying observations in an objective way, and the second one focuses on ways of handling 

them to reduce their effect on survey estimates. 

While non-representative outliers can be treated by post-stratification, representative outliers should be 

handled in the survey estimation process, by the use of outlier resistant or robust estimation procedures 

(Ren and Chambers, 2002).  

In this module we consider only representative outliers, in other words, any extreme values that 

represent other true observations in the population.  

There are three main methods of dealing with outliers in a finite population, apart from removing them 

from the dataset (Cox et al., 1995): 

1. reducing the weights of outliers (trimming weight),  

2. changing the values of outliers (Winsorisation, trimming), 

3. using robust estimation techniques such as M-estimation. 

Weight trimming reduces large weights to a fixed cut-off value and adjusts weights below this value to 

maintain the untrimmed weight sum, reducing variability at the cost of introducing some bias (Elliott, 

2007). The literature mentions various approaches to determine cut-off points at which to trim 

weights. Most standard methods are ad hoc in that they do not use the data to optimise bias-variance 

trade-offs.  
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According to Potter (1990), a weight should be trimmed at the point where the loss of precision due to 

a large weight is larger than the bias introduced by trimming the weight. It can be said that the general 

approach involves reducing the survey weight associated with that observation (Chambers, 1996; 

Detlefsen, 1992; Elliott and Little, 2000; Potter, 1988, 1993; Theberge, 2000; Zaslavsky et al., 2001). 

In many business surveys it is a relatively common practice to set the survey weight equal to one. One 

could say that the identified outlier is a “non-representative” outlier (Eltinge and Cantwell, 2006). In 

some cases setting a weight equal to one may be viewed as the limiting case of more refined 

adjustment procedure like Winsorisation or M-estimation (Eltinge and Cantwell, 2006). Winsorisation 

is frequently used in business surveys, so it is presented below in more detail. The general idea of 

Winsorisation is that if an observation exceeds a pre-set cut-off value, then the observation is replaced 

by that cut-off value or by a modified value closer to the cut-off value. 

2.1 Winsorisation 

In business statistics, which are characterised by skewed distributions, GREG estimation procedures 

may provide unsatisfactory results. One of the most popular methods suggested in the literature 

consists in modifying values in the sample so that the estimator becomes robust and is not affected by 

large residuals (Kokic and Bell, 1994; Chambers, 1996; Chambers et al., 2000; Rivest and Hidiroglou, 

2004; Dehnel and Gołata, 2010). This approach is exemplified by Winsor estimation, which was 

applied for the first time in a survey conducted by Searls (1966). Winsorisation involves identifying 

cut-off (thresholds) values. Sample observations whose values lie outside certain pre-set cut-off values 

are transformed in order to make them closer to the cut-off value. 

Winsorisation may be one-sided or two-sided. One-sided Winsorisation adjusts influential values 

deemed to be too large. Two-sided Winsorisation adjusts influential values deemed to be both too 

large and too small. 

Cut-off values are derived in a way that approximately minimises the MSE of estimates. All sampled 

units are divided into two (or three) groups. One group contains typical observations, which are left 

unmodified, the other one(s) contain(s) observations regarded as (large or small) outliers. The 

classification is made on the basis of one (if outliers are not divided into large and small) or two 

(when, on the contrary, large and small outliers are distinguished) pre-set cut-off values. Then, values 

of the study variable outside the cut-off values are transformed so that they are no longer regarded as 

outliers. It should be stressed, however, that the modified values are artificial and may sometimes be 

unacceptable. As a result of Winsor estimation, we obtain a modified sample, in which untypical 

observations have been replaced with typical ones. Further calculations are conducted for the modified 

sample. Any kind of estimation can be used at this stage. Here, GREG estimation is illustrated. 

The Winsorised estimator of the population total is defined ∑
∈

=
si

iiwin ywY *ˆ  where *

iy  is the modified 

value of the study variable. 

First, let us consider the case when we have only large outliers.  

Two types of Winsorisation can be applied in the treatment of outliers. Winsorised Type I estimator is 

based on an arbitrary assumption whereby any outliers exceeding a pre-set cut-off value K are always 

replaced by that value K:  

 Ky i =* if Ky i >  and 
ii yy =*  otherwise. 
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On the contrary, with a Type II estimator, as the GREG weight iw~  decreases, the contribution of the 

observed values of the outliers increases – that is the modified value of the study variable 

“approaches” the value of the outlier, i.e., the real value of the variable. 

Under Type II Winsorisation:  
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The use of Winsor estimation reduces estimator variance, while, at the same time, it may introduce 

bias. However, if cut-off values are chosen appropriately, the decline in variance is big enough to 

offset the bias of MSE (Hedlin, 2004). 

The main difficulty then lies in the choice of cut-off values for dividing observations in the sample. 

The optimum selection has a strong effect on estimation quality. 

The Winsor estimator, with GREG estimation, can be expressed as: 
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where, in the presence of outliers, modified values of the study variable *

iy  are calculated in the 

following manner (Gross et al., 1986):  

 















<







−+









≤≤

>







−+









=

LiiLi

i

i

i

UiiLii

UiiUi

i

i

i

i

KyK
w

y
w

KyKy

KyK
w

y
w

y

      if    ~
1

1~
1

     if                                    

     if    ~
1

1~
1

*
          (2) 

 





















−








+= ∑∑

∈

−

∈

'1

''1
si

iix

si

iiiii xwtxxwxg            (3) 

where: 

 { }NiU ,.....,.....1=  - target population of size N; 

 ( )Uss ⊆  - sample; 

 
i

g
i

w
i

w =~ ; 

 
i

iw
π

1=  - sampling weights; 

 ig  - weights dependent on the value of a vector of auxiliary variables for sampled units; 

 ( )'

1 ,...,,..., Kikiii xxxx =  - vector of auxiliary variables; 

 ∑
∉

=
Ui

ix xt  - population total; 

 UiK  - upper cut-off value; LiK  - lower cut-off value. 
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Based on formula (1) it can be assumed that a unit drawn into the sample is regarded as an element 

representing ( )1~ −iw  non-sampled units. Hence, according to formula (2), an observation regarded as 

an outlier contributes its unweighted values, while the non-sampled units, represented by the 

remainder of the weight ( )1~ −iw , contribute pre-set upper or lower cut-off values. 

Cut-off values are calculated to minimise MSE of Winsorised estimator under the model (Preston and 

Mackin, 2002): 

 
( )1~

*

−
−=

i

U

iUi
w

B
K µ               (4) 

 
( )1~

*

−
−=

i

L

iLi
w

B
K µ               (5) 

where: 

 ( )iii xYE |** =µ  - conditional expectation under the assumed regression model; 

 [ ]
DIRwinUU YYEB ˆˆ −=  - bias of 

winUŶ ; 

 [ ]
DIRwinLL YYEB ˆˆ −=  - bias of 

winLŶ ; 

 
winUŶ  - Winsor estimator of the population total when only upper Winsorisation is performed; 

 
winLŶ  - Winsor estimator of the population total when only lower Winsorisation is performed. 

When Winsorisation is mild and reasonably symmetric, being *

iµ  difficult to estimate, we can replace 

*

iµ  with 
iµ . Then the approximately optimal cut-offs are (Preston and Mackin, 2002): 
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Under the assumption 
iii xβµµ ˆˆ ==  (Preston and Mackin, 2002), cut-off values are estimated based 

on the following formulas: 
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where 
ii xβµ ˆˆ =  - a robust estimate of regression parameter 

iµ  (see below). 

In order to estimate the bias BU under Winsorisation we can use the Kokic and Bell approach (1994). 

According to that approach, the value of BU can be calculated by solving the equation: 
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 { } 00,max =







−− ∑

∈si

i GDEG            (10) 

where ( )( )1~* −−= iiii wYD µ  are weighted residuals. Assuming iµ̂  is a robust estimate of parameter iµ , 

we obtain ( )( )1~ˆˆ −−= iiii wYD µ . 

We can write the function ( )( )kU D̂ψ  (Kokic and Bell, 1994): 

 ( )( ) ( ) ( ){ } ( ) ( ) ( )∑∑
=∈

−+=−−=
k

j

jk

si

kikkU DDkDDDD
1

ˆˆ10,ˆˆmaxˆˆψ        (11) 

where: 

)(k  - a number assigned to the unit drawn into the sample after ordering all units in the sample 

according to non-ascending estimated residuals
iD̂ : ( ) ( ) ...0...ˆˆ

21 ≥≥≥≥ DD . 

By solving ( ) 0=GUψ  one can obtain the value of G . In practice, since it is difficult to find the right 

solution of the equation, two methods are proposed. According to the first one, G is estimated using 

the formula: 
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where *k  is the last value of k for which the value of ( )( )kU D̂ψ  is non-negative. 

The second approach involves using linear interpolation between ( ) ( )∑
=+

*

1
*

ˆ
1

1 k

j

jD
k

 and ( ) ( )∑
+

=+

1

1
*

*

ˆ
2

1 k

j

jD
k

. 

Then, Ĝ  can be expressed as (Preston and Mackin, 2002): 
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       (13) 

The value of H can be computed similarly. Estimates of weighted residuals ( )( )1~ˆˆ −−= iiii wYD µ  are 

arranged in ascending order [ ] [ ] ...0...ˆˆ
21 ≤≤≤≤ DD . Function [ ]( )

mL D̂ψ  can be written as: 

 [ ]( ) [ ] [ ]{ } ( ) [ ] [ ]∑∑
=∈

−+=−−=
m

l

lm

si

mimmL
DDmDDDD

1

ˆˆ10,ˆˆminˆˆψ        (14) 

where: 

[ ] [ ] [ ]ml ...1=  - a number assigned to the unit drawn into the sample after ordering all units in 

the sample by estimated residuals 
iD̂ . 

The value Ĥ  can thus be evaluated as (cf. formula (15)) (Preston and Mackin, 2002): 
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      (15)  

where **m  is the last value of m for which the value of [ ]( )
mU D̂ψ  is non-positive. 

In order to estimate cut-off values 
UiK̂  and 

LiK̂ , in addition to the above bias parameters UBG −=  and 

LBH −=  it is necessary to compute 
ii xβµ ˆˆ =  which is an estimate of *

iµ . For this purpose, robust 

regression methods can be used. Those recommended in the literature (Preston and Mackin, 2002) 

include: Trimmed least squares (TLS), Trimmed least absolute value (LAV), Sample Splitting, Least 

median of squares (LMS). 

The method of Trimmed least squares (TLS) involves first fitting an Ordinary Least Squares (OLS) 

regression model to minimise the function: 

 ( )2

∑
∈

−=
si

i

T

i xyF β             (16)  

Then fitted values are calculated, and then residuals. In the second step, units with the largest positive 

and negative residuals are removed. As a rule, the sample is reduced by about 5%. Finally, a new 

regression model is fitted to the reduced sample in order to estimate the value of *

iµ . One advantage 

of the TLS is that it is quick to run and simple. 

Another method used in robust regression is Trimmed least absolute value (LAV). It consists in fitting 

a regression model to minimise the function: 

 ∑
∈

−=
si

i

T

i xyF β             (17) 

After evaluating fitted values and residuals, as is the case in the TLS method, units with the largest 

positive and negative residuals are removed. A new regression model is fitted to the reduced sample. It 

is expected that the LAV method is a more robust regression model than the TLS technique because 

large residuals which are not squared have less influence on the regression parameters. 

Another example of robust regression is Sample Splitting Technique based on Ordinary Least Squares 

(OLS). It is applied to a dataset that has been randomly split into two halves. A regression model is 

fitted to each half of the data while the residuals are calculated using the model applied to the half of 

the data that was not used to fit the model. Then, after merging the data, units with the largest positive 

and negative residuals are removed. The process is repeated until a certain percentage of data has been 

deleted. The SS technique is expected to be more robust than TLS because the residuals used to 

remove the ‘outlier’ units are not calculated from a regression model that has been generated using 

these ‘outlier’ units. 

The list of robust regression techniques cannot be complete without the Least median of squares 

(LMS) technique. It was described by Rousseeuw and Leroy (2003). It resembles the bootstrap 

method. It involves drawing subsamples of size n – 1 from a sample of size n using simple random 

sampling with replacement. For each subsample trial regression model parameters are calculated and 

then their squared residuals, which are used to calculate the median. The model with the smallest 

median of squared residuals is selected. The LMS technique should be more robust than TLS because 
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an OLS regression model is fitted in the absence of "outlier" units, without totally removing these 

‘outlier’ units. 

3. Preparatory phase 

 

4. Examples – not tool specific 

 

5. Examples – tool specific 

 

6. Glossary 

For definitions of terms used in this module, please refer to the separate “Glossary” provided as part of 

the handbook. 
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Specific section 

8. Purpose of the method 

The module describes one estimation method frequently applied in business surveys, used to identify 

and handle outliers: Winsorisation. The general idea of Winsorisation is that if an observation exceeds 

a pre-set cut-off value, then the observation is replaced by that cut-off value or by a modified value 

closer to the cut-off value. As a result of Winsor estimation, we obtain a modified sample, in which 

untypical observations have been replaced with typical ones. The impact of outlying units is reduced. 

Further calculations are conducted for the modified sample. Any kind of estimation can be used at this 

stage. 

9. Recommended use of the method 

1. The method presented in this module is recommended for use in the case when the study 

variable(s) are highly skewed and several auxiliary variables that can be used to improve 

estimation including outliers. Such a situation is common in business statistics. The growing 

use of auxiliary information from administrative registers and the need to substantially reduce 

sample sizes or to produce more effective estimates has increased the importance of 

recognising and dealing with the data problem. 

2. It is particularly suited to sample survey estimation. It can be used for various estimators (here, 

GREG estimation is illustrated) and sampling schemes.  

3. In the case of stratified random sampling, the use of Winsor estimator can reduce the impact of 

outliers on stratum estimates while the population estimates remain unchanged (Rivest and 

Hidiroglou, 2004).  

4. The method is flexible because the cut-offs can be chosen to suit the situation. It is simple to 

implement for applications with multiple variables and estimates. 

10. Possible disadvantages of the method 

1. The one-sided Winsorisation can introduces a negative bias, which can result in inconsistent 

estimates. 

2. The values modified by Winsor estimator are artificial and may sometimes be unacceptable. 

11. Variants of the method 

1. There are three main methods of dealing with outliers in a finite population (Cox et al., 1995): 

• reducing the weights of outliers (trimming weight); 

• changing the values of outliers (Winsorisation, trimming); 

• using robust estimation techniques such as M-estimation. 

Winsorisation is most frequently used in business surveys. Two types of Winsorisation can be 

distinguished. The difference between them consists in the treatment of outliers.  
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Winsorised Type I estimator is based on an arbitrary assumption whereby any outliers 

exceeding a preset cut-off value K are always replaced by that value K. 

In the case of Type II estimator, as weight iw~  decreases, the contribution of outliers increases 

– the modified value of the study variable “approaches” the value of the outlier, i.e., the real 

value of the variable. 

Winsorisation cut-offs can be chosen on different levels, e.g.: 

• specifying a cut-off value for observations by stratum; 

• specifying an individual cut-off value for each observation. 

12. Input data 

1. The input data set has to contain individual information for all units in the sample. The input 

data set can contain information coming from auxiliary sources, e.g., administrative register. 

Specific software (e.g., SAS) may be based on different structures of the input data set in the 

procedure of robust estimation. 

13. Logical preconditions 

1. Missing values 

1.  

2. Erroneous values 

1.  

3. Other quality related preconditions 

1.  

4. Other types of preconditions 

1.  

14. Tuning parameters 

1. Cut-offs. 

15. Recommended use of the individual variants of the method 

1. Surveys of very skewed populations which contain a few extreme values: surveys of business, 

agriculture, personal income and fortune. 

16. Output data 

1. Estimates of desired levels (target variable values after Winsorisation), quality measures for 

the estimates (e.g., variances, MSE). 

17. Properties of the output data  

1. The user should check the quality of estimates based on their knowledge of the investigated 

phenomenon, MSE, variance, bias of estimates. 
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18. Unit of input data suitable for the method 

Information about variable of interest and auxiliary variables should be available for all units in the 

sample (sample level). 

19. User interaction - not tool specific 

The countermeasures against outliers can be divided into:  

1. The detection of outliers – quantitative judgment, which requires an indicator of the degree of 

divergence of each data. Various methods of computing such indicators have been developed. 

2. Outlier treatment: 

• “weight modification,” under which the weight of the sample unit is modified; 

• “value modification,” under which the value reported by the sample unit is modified; 

• the combination of the two, under which both the weight and the value reported by the 

sample are modified; 

• robust estimation techniques. 

20. Logging indicators 

1. Run time of the application. 

2. Characteristics of the input data. 

3. The number of units for which Winsorisation changed the values. 

21. Quality indicators of the output data 

1. MSE 

2. Variance 

3. Bias 

22. Actual use of the method 

1. Survey of Employment, Payrolls, and Hours (SEPH), Statistics Canada: weight modification. 

2. State and Metro Area Employment, Hours, and Earnings, Bureau of Labor Statistics America: 

reduces the impact of outliers through “weight reduction”. 

3. Consumer Price Index, Australian Bureau of Statistics: Modifies the value of the outlier to the 

value next in size to the outlier through Winsorisation. 

Interconnections with other modules 

23. Themes that refer explicitly to this module 

1. Statistical Data Editing – Main Module 

2. Weighting and Estimation – Main Module 
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24. Related methods described in other modules 

1. Weighting and Estimation – Calibration 

2. Weighting and Estimation – Generalised Regression Estimator 

25. Mathematical techniques used by the method described in this module 

1. Regression 

2. Ordinary Least Squares (OLS) 

3. Trimmed least squares (TLS) 

4. Trimmed least absolute value (LAV) 

5. Sample Splitting 

6. Least median of squares (LMS) 

26. GSBPM phases where the method described in this module is used 

1. 5.3 Review, validate, edit 

2. 5.4 Impute 

3. 5.6 Calculate weights 

4. 5.7 Calculate aggregates 

27. Tools that implement the method described in this module 

1. Several popular statistical packages – including SAS, R, STATA, S-PLUS, LIMDEP, and E-

Views – have procedures for robust regression analysis. 

2. Least absolute deviations – SAS users call this procedure with the LAV command within the 

IML library. In STATA, median regression is performed with the quantile regression (qreg) 

procedure. 

3. Least median of squares – SAS users can call least median of squares with the LMS call in 

PROC IML, S-Plus users can execute this algorithm with lmsreg. 

4. Weighted least squares – SAS users call this procedure with the LTS command within the IML 

library. 

28. Process step performed by the method 

Estimation 
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Administrative section 

29. Module code 

Weighting and Estimation-M-Outlier Treatment 

30. Version history 

Version Date Description of changes Author Institute 

0.1 29-02-2012 first version Grazyna Dehnel  GUS 

0.2 31-05-2012 second version Grazyna Dehnel  GUS 

0.3 10-12-2012 third version Grazyna Dehnel  GUS 

0.4 31-05-2013 fourth version Grazyna Dehnel  GUS 

0.5 09-09-2013 fifth version Grazyna Dehnel  GUS 

0.6 25-02-2014 sixth version Grazyna Dehnel  GUS 

0.6.1 11-03-2014 preliminary release   

1.0 26-03-2014 final version within the 
Memobust project 
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